使用 TensorFlow, 你必须明白 TensorFlow:

使用图 (graph) 来表示计算任务.

在被称之为 会话 (Session) 的上下文 (context) 中执行图.

使用 tensor 表示数据.

通过 变量 (Variable) 维护状态.

使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.

综述

TensorFlow 是一个编程系统, 使用图来表示计算任务. 图中的节点被称之为 op

(operation 的缩写). 一个 op 获得 0 个或多个 Tensor, 执行计算,

产生 0 个或多个 Tensor. 每个 Tensor 是一个类型化的多维数组.

例如, 你可以将一小组图像集表示为一个四维浮点数数组,

这四个维度分别是 [batch, height, width, channels].

一个 TensorFlow 图描述了计算的过程. 为了进行计算, 图必须在 会话 里被启动.

会话 将图的 op 分发到诸如 CPU 或 GPU 之类的 设备 上, 同时提供执行 op 的方法.

这些方法执行后, 将产生的 tensor 返回. 在 Python 语言中, 返回的 tensor 是

numpy ndarray 对象; 在 C 和 C++ 语言中, 返回的 tensor 是

tensorflow::Tensor 实例.

计算图

TensorFlow 程序通常被组织成一个构建阶段和一个执行阶段. 在构建阶段, op 的执行步骤

被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op.

例如, 通常在构建阶段创建一个图来表示和训练神经网络, 然后在执行阶段反复执行图中的训练 op.

TensorFlow 支持 C, C++, Python 编程语言. 目前, TensorFlow 的 Python 库更加易用,

它提供了大量的辅助函数来简化构建图的工作, 这些函数尚未被 C 和 C++ 库支持.

三种语言的会话库 (session libraries) 是一致的.

构建图

构建图的第一步, 是创建源 op (source op). 源 op 不需要任何输入, 例如 常量 (Constant). 源 op 的输出被传递给其它 op 做运算.

Python 库中, op 构造器的返回值代表被构造出的 op 的输出, 这些返回值可以传递给其它

op 构造器作为输入.

TensorFlow Python 库有一个默认图 (default graph), op 构造器可以为其增加节点. 这个默认图对

许多程序来说已经足够用了. 阅读 Graph 类 文档

来了解如何管理多个图.

import tensorflow as tf

# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点

# 加到默认图中.

#

# 构造器的返回值代表该常量 op 的返回值.

matrix1 = tf.constant([[3., 3.]])

# 创建另外一个常量 op, 产生一个 2x1 矩阵.

matrix2 = tf.constant([[2.],[2.]])

# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.

# 返回值 'product' 代表矩阵乘法的结果.

product = tf.matmul(matrix1, matrix2)

默认图现在有三个节点, 两个 constant() op, 和一个matmul() op. 为了真正进行矩阵相乘运算, 并得到矩阵乘法的

结果, 你必须在会话里启动这个图.

在一个会话中启动图

构造阶段完成后, 才能启动图. 启动图的第一步是创建一个 Session 对象, 如果无任何创建参数,

会话构造器将启动默认图.

欲了解完整的会话 API, 请阅读Session 类.

# 启动默认图.

sess = tf.Session()

# 调用 sess 的 'run()' 方法来执行矩阵乘法 op, 传入 'product' 作为该方法的参数.

# 上面提到, 'product' 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取回

# 矩阵乘法 op 的输出.

#

# 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.

#

# 函数调用 'run(product)' 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.

#

# 返回值 'result' 是一个 numpy `ndarray` 对象.

result = sess.run(product)

print result

# ==> [[ 12.]]

# 任务完成, 关闭会话.

sess.close()

Session 对象在使用完后需要关闭以释放资源. 除了显式调用 close 外, 也可以使用 "with" 代码块

来自动完成关闭动作.

with tf.Session() as sess:

result = sess.run([product])

print result

在实现上, TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU

或 GPU). 一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测. 如果检测到 GPU, TensorFlow

会尽可能地利用找到的第一个 GPU 来执行操作.

如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU 默认是不参与计算的. 为了让 TensorFlow

使用这些 GPU, 你必须将 op 明确指派给它们执行. with...Device 语句用来指派特定的 CPU 或 GPU

执行操作:

with tf.Session() as sess:

with tf.device("/gpu:1"):

matrix1 = tf.constant([[3., 3.]])

matrix2 = tf.constant([[2.],[2.]])

product = tf.matmul(matrix1, matrix2)

...

设备用字符串进行标识. 目前支持的设备包括:

"/cpu:0": 机器的 CPU.

"/gpu:0": 机器的第一个 GPU, 如果有的话.

"/gpu:1": 机器的第二个 GPU, 以此类推.

阅读使用GPU章节, 了解 TensorFlow GPU 使用的更多信息.

交互式使用

文档中的 Python 示例使用一个会话 Session 来

启动图, 并调用 Session.run() 方法执行操作.

为了便于使用诸如 IPython 之类的 Python 交互环境, 可以使用

InteractiveSession 代替

Session 类, 使用 Tensor.eval()

和 Operation.run() 方法代替

Session.run(). 这样可以避免使用一个变量来持有会话.

# 进入一个交互式 TensorFlow 会话.

import tensorflow as tf

sess = tf.InteractiveSession()

x = tf.Variable([1.0, 2.0])

a = tf.constant([3.0, 3.0])

# 使用初始化器 initializer op 的 run() 方法初始化 'x'

x.initializer.run()

# 增加一个减法 sub op, 从 'x' 减去 'a'. 运行减法 op, 输出结果

sub = tf.sub(x, a)

print sub.eval()

# ==> [-2. -1.]

Tensor

TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor.

你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和

一个 shape. 想了解 TensorFlow 是如何处理这些概念的, 参见

Rank, Shape, 和 Type.

变量

Variables for more details.

变量维护图执行过程中的状态信息. 下面的例子演示了如何使用变量实现一个简单的计数器. 参见

变量 章节了解更多细节.

# 创建一个变量, 初始化为标量 0.

state = tf.Variable(0, name="counter")

# 创建一个 op, 其作用是使 state 增加 1

one = tf.constant(1)

new_value = tf.add(state, one)

update = tf.assign(state, new_value)

# 启动图后, 变量必须先经过`初始化` (init) op 初始化,

# 首先必须增加一个`初始化` op 到图中.

init_op = tf.initialize_all_variables()

# 启动图, 运行 op

with tf.Session() as sess:

# 运行 'init' op

sess.run(init_op)

# 打印 'state' 的初始值

print sess.run(state)

# 运行 op, 更新 'state', 并打印 'state'

for _ in range(3):

sess.run(update)

print sess.run(state)

# 输出:

# 0

# 1

# 2

# 3

代码中 assign() 操作是图所描绘的表达式的一部分, 正如 add() 操作一样. 所以在调用 run()

执行表达式之前, 它并不会真正执行赋值操作.

通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中.

在训练过程中, 通过重复运行训练图, 更新这个 tensor.

Fetch

为了取回操作的输出内容, 可以在使用 Session 对象的 run() 调用 执行图时, 传入一些 tensor,

这些 tensor 会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点 state, 但是你也可以取回多个

tensor:

input1 = tf.constant(3.0)

input2 = tf.constant(2.0)

input3 = tf.constant(5.0)

intermed = tf.add(input2, input3)

mul = tf.mul(input1, intermed)

with tf.Session() as sess:

result = sess.run([mul, intermed])

print result

# 输出:

# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]

需要获取的多个 tensor 值,在 op 的一次运行中一起获得(而不是逐个去获取 tensor)。

Feed

上述示例在计算图中引入了 tensor, 以常量或变量的形式存储. TensorFlow 还提供了 feed 机制, 该机制

可以临时替代图中的任意操作中的 tensor  可以对图中任何操作提交补丁, 直接插入一个 tensor.

feed 使用一个 tensor 值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数.

feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 "feed" 操作,

标记的方法是使用 tf.placeholder() 为这些操作创建占位符.

input1 = tf.placeholder(tf.float32)

input2 = tf.placeholder(tf.float32)

output = tf.mul(input1, input2)

with tf.Session() as sess:

print sess.run([output], feed_dict={input1:[7.], input2:[2.]})

# 输出:

# [array([ 14.], dtype=float32)]

for a larger-scale example of feeds.

如果没有正确提供 feed, placeholder() 操作将会产生错误.

MNIST 全连通 feed 教程

(source code)

给出了一个更大规模的使用 feed 的例子.

TensorFlow 基本使用的更多相关文章

  1. Tensorflow 官方版教程中文版

    2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院组织在线TensorFlow中文文档翻译.一个月后,30章文档全部翻译校对完成,上线并提供电子书下载,该 ...

  2. tensorflow学习笔记二:入门基础

    TensorFlow用张量这种数据结构来表示所有的数据.用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], ...

  3. 用Tensorflow让神经网络自动创造音乐

    #————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Ten ...

  4. tensorflow 一些好的blog链接和tensorflow gpu版本安装

    pading :SAME,VALID 区别  http://blog.csdn.net/mao_xiao_feng/article/details/53444333 tensorflow实现的各种算法 ...

  5. tensorflow中的基本概念

    本文是在阅读官方文档后的一些个人理解. 官方文档地址:https://www.tensorflow.org/versions/r0.12/get_started/basic_usage.html#ba ...

  6. kubernetes&tensorflow

    谷歌内部--Borg Google Brain跑在数十万台机器上 谷歌电商商品分类深度学习模型跑在1000+台机器上 谷歌外部--Kubernetes(https://github.com/kuber ...

  7. tensorflow学习

    tensorflow安装时遇到gcc: error trying to exec 'as': execvp: No such file or directory. 截止到2016年11月13号,源码编 ...

  8. 【转】TensorFlow练习20: 使用深度学习破解字符验证码

    验证码是根据随机字符生成一幅图片,然后在图片中加入干扰象素,用户必须手动填入,防止有人利用机器人自动批量注册.灌水.发垃圾广告等等 . 验证码的作用是验证用户是真人还是机器人:设计理念是对人友好,对机 ...

  9. 【转】机器学习教程 十四-利用tensorflow做手写数字识别

    模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基 ...

  10. 【转】Ubuntu 16.04安装配置TensorFlow GPU版本

    之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04 requirements: Ubuntu 16.0 ...

随机推荐

  1. VxWorks 6.9 内核编程指导之读书笔记 -- POSIX

    POSIX能力 VxWorks扩展了POSIX,为了移植,VxWorks提供了额外的POSIX接口作为可选组件.VxWorks实现了POSIX 1003.1(POSIX .1)一些传统接口以及POSI ...

  2. (转)IIS7 优化-网站请发并发数

    1. 调整IIS 7应用程序池队列长度 由原来的默认1000改为65535. IIS Manager > ApplicationPools > Advanced Settings Queu ...

  3. 理解JavaScript设计模式与开发应用中发布-订阅模式的最终版代码

    最近拜读了曾探所著的<JavaScript设计模式与开发应用>一书,在读到发布-订阅模式一章时,作者不仅给出了基本模式的通用版本的发布-订阅模式的代码,最后还做出了扩展,给该模式增加了离线 ...

  4. java随笔 乱腾腾的 一些东西

    调用requonse.getWriter()方法时可实现文本字符串数据输出,调用response.getOutputStream()方法可现实字节流数据的输出.两种输出方式threadlocal模式和 ...

  5. hdu 1686 Oulipo KMP匹配次数统计

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1686 分析:典型的KMP算法,统计字符串匹配的次数. 用Next数组压缩时间复杂度,要做一些修改. / ...

  6. 驾照理论模拟考试系统Android源码下载

    ‍‍‍驾照理论模拟考试系统Android源码下载 <ignore_js_op> 9.png (55.77 KB, 下载次数: 0) <ignore_js_op> 10.png ...

  7. 《mysql数据库备份小脚本》

    vim mysql.sh #!/bin/bashDAY=`date +%Y-%m-%d` //日期以年月日显示并赋予DAY变量SIZE=`du -sh /var/lib/mysql //查看mysql ...

  8. 《RHEL6硬盘的分区和swap分区管理》——硬盘分区的大总结

    首先介绍下几个简单的命令: free查看当前系统内存的使用情况 查看分区的使用情况:T类型.H显示大小以G,M 查看系统所有硬盘的分区信息:分区的没分区的都显示出来了 开始分区:为什么要加cu  不加 ...

  9. Azure + vsftpd + ubntu14 + 虚拟用户 遇到的问题:从网上摘抄

    :在Azure安装好ubuntu虚拟机,安装包选择ubuntu14.04 LTS,选择LTS,以便微软对其以后的更好支持,不选就可能技术支持不会很久,现只开一台,端口默认选择22 :打开虚拟机,进入端 ...

  10. Matlab2012a第一次安装打不开 查找程序安装类时出错

    打开bin文件夹下的matlab!!!!!!进行激活~