题目链接:http://poj.org/problem?

id=3169

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they
can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 



Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other
and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 



Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 



Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 



Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 



There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 



The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

题意:

给出N头牛,他们是依照顺序编号站在一条直线上的,同意有多头牛在同一个位置!

给出ML对牛,他们同意之间的距离小于等于W

给出MD对牛,他们之间的距离必须是大于等于W的

给出ML+MD的约束条件,求1号牛到N号的最大距离dis[N]。

假设dis[N] = INF,则输出-2。

假设他们之间不存在满足要求的方案,输出-1

其余输出dis[N];

PS:http://blog.csdn.net/zhang20072844/article/details/7788672

代码例如以下:

#include <cstdio>
#include <cstring>
#include <stack>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define N 20000
#define M 20000
int n, m, k;
int Edgehead[N], dis[N];
struct Edge
{
int v,w,next;
} Edge[2*M];
bool vis[N];
int cont[N];
void Addedge(int u, int v, int w)
{
Edge[k].next = Edgehead[u];
Edge[k].w = w;
Edge[k].v = v;
Edgehead[u] = k++;
}
int SPFA( int start)//stack
{
int sta[N];
memset(cont,0,sizeof(cont);
int top = 0;
for(int i = 1 ; i <= n ; i++ )
dis[i] = INF;
dis[start] = 0;
++cont[start];
memset(vis,false,sizeof(vis));
sta[++top] = start;
vis[start] = true;
while(top)
{
int u = sta[top--];
vis[u] = false;
for(int i = Edgehead[u]; i != -1; i = Edge[i].next)//注意
{
int v = Edge[i].v;
int w = Edge[i].w;
if(dis[v] > dis[u] + w)
{
dis[v] = dis[u]+w;
if( !vis[v] )//防止出现环
{
sta[++top] = v;
vis[v] = true;
}
if(++cont[v] > n)//有负环
return -1;
}
}
}
return dis[n];
}
int main()
{
int u, v, w;
int c;
int ml, md;
while(~scanf("%d%d%d",&n,&ml,&md))//n为目的地
{
k = 1;
memset(Edgehead,-1,sizeof(Edgehead));
for(int i = 1 ; i <= ml; i++ )
{
scanf("%d%d%d",&u,&v,&w);
Addedge(u,v,w);
}
for(int i = 1 ; i <= md; i++ )
{
scanf("%d%d%d",&u,&v,&w);
Addedge(v,u,-w);
}
for(int i = 1; i < n; i++)
{
Addedge(i+1,i,0);
}
int ans = SPFA(1);//从点1開始寻找最短路
if(ans == INF)
{
printf("-2\n");
}
else
{
printf("%d\n",ans);
}
}
return 0;
}

POJ 3169 Layout(差分约束啊)的更多相关文章

  1. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  2. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  3. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  4. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  5. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  6. poj 3169&hdu3592(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9687   Accepted: 4647 Descriptio ...

  7. Bellman-Ford算法:POJ No.3169 Layout 差分约束

    #define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...

  8. POJ 3169 Layout 差分约束系统

    介绍下差分约束系统:就是多个2未知数不等式形如(a-b<=k)的形式 问你有没有解,或者求两个未知数的最大差或者最小差 转化为最短路(或最长路) 1:求最小差的时候,不等式转化为b-a>= ...

  9. POJ 3169 Layout (spfa+差分约束)

    题目链接:http://poj.org/problem?id=3169 差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.h ...

随机推荐

  1. linux命令——磁盘命令mkdir

    一.介绍 mkdir 命令用于创建文件夹或目录(类似dos下的md命令),要求创建目录的用户在当前目录中具有写权限, 并且指定目录名不能是当前目录中已有的目录或文件名称.名称区分大小写. 二.用法及参 ...

  2. bjfu1235 两圆公共面积

    给定两个圆,求其覆盖的面积,其实也就是求其公共面积(然后用两圆面积和减去此值即得最后结果). 我一开始是用计算几何的方法做的,结果始终不过.代码如下: /* * Author : ben */ #in ...

  3. 几种常见的FTP软件的二进制设置说明

    几种常见的FTP软件的二进制设置说明: 1.FlashFXP: 打开 FlashFXP:在工具栏中,选项 => 参数(也可以直接按F6键),在弹出来的窗口中,选择“传输(T)”卡,在传输模式中选 ...

  4. C ~ 指针函数与函数指针的区别

    一. 在学习arm过程中发现这“指针函数”与“函数指针”容易搞错,所以今天,我自己想一次把它搞清楚,找了一些资料,首先它们之间的定义: 1.指针函数是指带指针的函数,即本质是一个函数.函数返回类型是某 ...

  5. 帮同事写了几行代码,在 安装/卸载 程序里 注册/卸载 OCX控件

    写了个小控制台程序,这个程序用来注册 / 卸载OCX控件,用在Inno Setup做的安装卸载程序里. #include "stdafx.h" #include <windo ...

  6. BootStrap入门教程 (二) :BASE CSS(排版(Typography),表格(Table),表单(Forms),按钮(Buttons))

    上讲回顾:Bootstrap的手脚架(Scaffolding)提供了固定(fixed)和流式(fluid)两种布局,它同时建立了一个宽达940px和12列的格网系统. 基于手脚架(Scaffoldin ...

  7. Java8新特性 1——利用流和Lambda表达式操作集合

    Java8中可以用简洁的代码来操作集合,比如List,Map,他们的实现ArrayList.以此来实现Java8的充分利用CPU的目标. 流和Lambda表达式都是Java8中的新特性.流可以实现对集 ...

  8. android 源码编译中的错误 解决

    1.编译种错误提示: arm-none-linux-gnueabi-gcc: directory: No such file or directory arm-none-linux-gnueabi-g ...

  9. Spring+Quartz 整合一:常规整合

    步骤一: 定时任务需要一个配置文件(spring-mvc-timeTask.xml 随便起名),将其在web.xml中加载 <context-param> <param-name&g ...

  10. bat定时执行,清除PHP缓存

    bat中需要设置一个等待时间,执行完一条命令后,等待30分钟后在执行第二条命令,请问怎么做?急急急----谢谢大家 @echo off& echo wscript.sleep wscript. ...