EDID真实数据块,请参考标准文档仔细核对
数据格式的详细说明:http://en.wikipedia.org/wiki/Extended_display_identification_data
下面是一个例子:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAaIAAAIlCAIAAAAYNGvFAAAgAElEQVR4nO2a25Xkuo5E08txbPy5Lo0Hmo/um62SiGDgRT0q9jofXRQYhEAyRJ3U5/+EEOLVfP7nf/+j//Sf/tN/L/7vswkhxKuRzQkhXo5sTgjxcj7btn12XJ3PM1DFhHgQf23u6jSeikonxP1ptznr4OM9EHl1hu2fE4cueOjhJSZ5IbwMly4f7wooeTUJKyx4K+q1OctHSH8J6zDtQ/sDQ8vmxGJcNrf595G3+5SAAt5fVcjmUBr5hSVEGO/qepzNeX0gzDNszgoO65NHsxKbO78p/+ml9t/ZzlMejwO8w5EKoA6H+HwCZmKt6j9G4iwJK4Bg65JVeqZxv15dgwqBAd43tAO8CEkbxet5alLWpbOCKx+cQAmX2dwW/V+PXsexzIuMxHYsmxMBwPa2/n3+cxo/DAbredoyzdN7dnmbzYEKljhd/ijHyPLjCgH4nPi2H8LAn0yAK57XxzuI3xSvsrn89MS6l5/7YjZ3XtPf1aD2X9jOr0D8JxPQpA/y/977oZGpwzT/MO02NxQvnB5yxTCXAsuotXTirbzY5shMyASq6LU5skz79qktAo8jnxIuZ8QzJ5sTAZjH9nkvTNcnY3NgPbts1MoZZztMyRUfo93mhofVw6VDI5Zi9MG4mzGdVvA0K3T/Qhgw6+3wDz4eDDoMw5sFj3vedOdLTCmYyDDHIrYO9hpUMSEehHapEOLlyOaEEC9HL60RVDEhHkT7ByXvRqUT4v6s+G7O+wtOic6w/XOCz2fY7iqdJR44FV5VVekEdArnXcS413dzVTpMu/XvYT5gpeLMwzkzUuS/pXOhTuG8izCyuXk+n49ZJf5Q4MrTpebtLp1lOrXzLsI8w+as4LA+GNH11JXNSYdXkM1dRa/N/Rip4mWNtyfcbjUCQ7yDzX1O4HbpXK4z/NNqF01cZnPbzLZ4HW87HnR/1fo3KWWFJZe7twLSuUpHNncTFtkc8JoSp3OtSP4hLJuTTkZHNncTVtjc1JWS6y9/vrMCpi8psjnp8AqyuatotznmEBT+fxygL9CM2a5Oc9Lx6sjmbkKvzXmneXhiOsQDjyOXEba52vdfPrfw5gkkI51lOoXzLsK025z10gcasRSjD8bdbMMCJmtd9a54oM8r4GIyUtJZo7PvxbeLcv7anHfmfjmqmBAPQrtUCPFyZHNCiJejl9YIqpgQD6L9g5J3o9IJcX9WfDc3PPh4D0ReHeaXsu8lq/17FWTFJA/yPASQaoUdz329ajgB7xRnFN6tI8Lc67u5Kh2m3fr3oeN0D+PMcT4xtZKOVk0Ce3iaAyPondPfpiMyyObmCbzP5sL3iyPD93XVOnmKjkjyDJuzgsP6rgTyNtenFusom3uWjkjSa3M/Rkof2mPvj8P2YTKWfpUxAf0vvM7Z7l0KOB9G5Bx5/pO8r7vZyt10RJLLbG7zbEus423HmTDxzCWyy9mt+O77nF2PjfD94kjrXh5nK3fTEUkW2RzYSyVOlznKTQNqbW6r2zZWe/IG8zb3dFu5m45IssLmpq7kTYDs7m336jNSuJdsTjqMjkjSbnPMeSqzLQNe5rXdvM01bZupvjcfsvu049Nt5W46IkmvzXmn+fP5TG0ReBy5jLDNTU2QvETqT++dkdr39abkul9eJ3xf5Jz+Nh2Rod3mDgwvHRqxFKMPxt3sA+ZUf9hrUgKov7+0eRzhXDe++3ncs7JLqva++PbfpiPC/FuFKjqPKibEg9AuFUK8HNmcEOLl6KU1giomxIPo/Qni9ah0QtyfdpuzDj7eA5FXZ9j+OTHsYg09zIpJfq/DtwMdK8NASRn9gE7V/II8sQiYekZq33HasjIfEeBe381V6TDtSU0y86T+WcQyAm9KVk28G89V26kIkCLrM/03KfWNzNSnPB8RQzaHEvAmRoaF62CFeW0OjxvbxtvC+WV08rby+e9HfzjbZfmIMM+wOSs4rE8m8BSbq8rHJUJ2zNhuVWIBEXCKDOyXqoKLGL0292OkxMvaNzKwfJm9931uk+3TQZnhQLtLrTAflwijE5AqOfVYk57Mx5sG6BJY/yLMZTa3OZcd0PG240wO2wwvx1vZXKE9legE1EoSw2He02Xe5sB8yePWsMjmap9m/MojN17YhmRzVYkVnuamYa6AJpvTaW4lK2yOt5WYYPn5TjZXosMLrqmPK+BAIA0QnxQUXtptjjlPhbcB6As0ZXPdNlc1v1X1ydhKx2lONreYXpvzLt/zk/Mcz7zUBLYxkxtODBPTx1LhZPC4eR3mOQRGHHbP1MebD69WoiCb66bd5qzDP2jEUow+GHeDNmF5WZWzePWHkcOb8iYzHBfr8zqbMV9TESBF6mz2Aymgg9dVST7eWRMB/tqcKu5CFRPiQWiXCiFejmxOCPFy9NIaQRUT4kG0f1DyblQ6Ie7Piu/mhgcf74HIqzNs/5xg8gEZukq34PRHVhXUYR+zIBOcD5Mn0Mxkngk4B5+7xG5KxLjXd3NVOky79e9DPF6IruXu7eIF3JE3Mrn9kvM7bPd6XGH+w0ukfTN95XTdyObm+eRtbs2yDnjusNeflufaXHn+Vnv5uhVNPMPmrOCwvsvX3mdzoEv5qTNw6omJHCLvbHMuEZGn1+Z+jMRZElYIOA65tkA+rTb32cFI7bsMRbxSVgt/a9agfCbf85drEnGklQ9vu+fgqsfzPh9eQYS5zOa26DR7dwJvW1Y+fTYX2DYHdwskA+KBOKMQPq3sK+96zIBI/GiJ5VNrcwEREWORzeVPDaQa044bXdssaXPfP8mDBg5Yb3PfSJx/MrG8zVUlUJKY96rIs8LmpsbRtA3C5zs+vbzNeU8Z4atM/OeES+QONjfM/1qbS06ryNNuc8x5yrsOklvrPjaXrEMsmUK1pvtKPgXPvS60uZL1L5L02px3uVgnCPL4Qy7H9TZn5ZbcNrWHYtdVnIDXYnB83ua8KYGToOuEWFUfkaTd5oYvEYdLh0YsxeiDcTf7AYuTtHrNqwDvDqcKdFx5WjpY35WMNQV8MiVF3uz8XTe12auRvy8wud76iAz/plNF51HFhHgQ2qVCiJcjmxNCvBy9tEZQxYR4EO0flLwblU6I+7Piuzn8s1fgR6twO/jlaxv9gobjt4pfWkH7VM1KNaMTSKOkOJtRh8B9ldT5PG5smqZDFAoKi3t9N1elw7QHYqaJMZFkzlM15l68Ol7AvXiVXXPk1QHtWCTQl6RDU1jI5hw608TIsHAd9mF5mzvreMHjBp4Bhz+710lSJ0y4UCLGM2zOCg7rk/vzhjbXfepxIZuLIZtbTK/N/RgpvXTwe5B1adjusjkw7k1sDrR7dbbQK6elE+s7dHBXcXDf5OPEW5xzPWVzi7nM5jb/crF0vO3Y+PZZHf7ND4rDrG3sOmVk6kluOe9mnraQfc9/rn+cDMedrgecUjIfEWaRzYE9UOJ0maPcvv37uE6Oi8OszZOxufCpJ+xrlmBA7VmnOV6HXEiyuW5W2NzUHbwJkN297YGOJTbnSuyAS9+rQxK+HSsyc1931pnqiybabY55zoeXHegLNPnhpnkutjkrOLNtkqe5TJ2tyLvZk2zu6fTanHe57E8Wlg6zvfEywkOQY4HGIcy9k1LT3MI2h2VdfcNpJO+rpM7M+gw84Yb/lsctoN3mhi9Hh0uHRizF6INxN9uwhqNb7UDKIqAPdJh6BnRcKZH1d+VDJunVAe1A5Fxkr842W1q8jgjzb9pUdB5VTIgHoV0qhHg5sjkhxMvRS2sEVUyIB9H+Qcm7UemEuD8rvpsbHny8ByKvTmBcKxOQJF+6wLhevKfL2nyGOuvrg3UCUsN2XqRQR4S513dzVTqB9ulazKzUwLhecJ5kfDif4eOEz6eqPmBdXVWf2jqLGLI5lIY3wMI7rpdkPV1Xrfihp8TyCdene71V5ePVEUmeYXNWsGwuJlhoc9ZpJZOPbE7U0mtzP0ZKvNR8I0GwdYkft8/mvONOpQ6liG1jq57rbc7SuSof2dzLuMzmtplt8Tredn57F9qca1wscv53YBuX2IplJbH9XFKfoY5s7pezyObAXipxOpfH8SJ3O815T6ykTsk21mmuT0ckWWFzAftwCQY8jtSpsrmmbRMWLMznwOX5DP+8Wz5eHZGk3eaY15DMsuM9bjqubM6bj9XrbrZyt3y8OiJJr815l93+RGDpMNspttzx0IxvWhQu92kpvCmFvRv3cuWzwFauqk95nUWAdpsbvtQcLh0asRSjHxt3OMQ0K6oQoXGnUnyeQMdKMnlr3nyq6hObRyBliXtvLa8jwvy1OVXchSomxIPQLhVCvBzZnBDi5eilNYIqJsSDaP+g5N2odELcnxXfzYGf4fK/oHW37wPIRnwLSRHpPFEnMIoo5F7fzVXpVLXvW5IrfjiWy+il8zgdMl42141sbp7Pnz8zNsfoS+d9OmS8bK6bZ9icFbzA5qwYV+Z3237SWaNDxsvmuum1uR8jcRaDFUCwdck7riteNicdr9q+/YtLUHi5zOa2mW3xOt523i7ByREPisMu337SWaMD4qdLSxSyyOaGXmNdyqglx2XeXplxeVleRDqP07Hik4LCywqbK59msrt3XOvcB14uZHPS8arlBYWXdpvzHpoYEebAX3JY8wqSfS/fftJZo2PFy+YW02tz1nSC9qmbAG9i9F3tscYh1lguEek8TseKn655UUi7zVkvfaARSzH6sXGHl6wu30veaoD8pfMyHRz/bXRlJQL8q7JqzaOKCfEgtEuFEC9HNieEeDl6aY2gignxINo/KHk3Kp0Q92fFd3PDg4/3QOTV6W7/XmWS30vx7VbkMCVXPYHOFl0PVulcCoFxh2kMhw7k4+3C5+OaL5HkXt/NVel0t/OZh8fCIuDfjJQVkNx4w5Rcthsbd5hAJp9AvCufkueK4JHNpfL07hmvPtDpsDmy+7RjbBv32VxtfdbnI5I8w+as4HLbIvWxAtb05uMSJHVkc92Z1OYjkvTa3I+REi9r30gQDF7EyHGH+jjPm9icV+RPjFVP73r47BgqZGzuLM5nZSmTNmeth3w+W2j9izCX2dw2sy1ex9vutUsQf4nN5c9iwJL4NM7B5feVOfUkbW54L1X5nEcRrSyyOe8pKaxWMi6zdaciIKzP5mJTWXWo7LC5A8nEyHzAfZXks+XWv/CywuZqn9J89/C4/Ha9lc2F5/HONkdm4tLJ2Nwl+Ygk7TbHHILCyw70dY0b3q73sbnMC9SbbK51vV2Vj0jSa3MBW5kuC+BxYdvy6oMWC29ujBSfJ4hPmos1d5ff12bcptdzXeuBzEc2t5h2mzswvHRoxFKMvndcSx/Ef69ShYB3B+7a0gFJkmpMPfl8/gTzs4nzty55dYZS1C3Z8VX5BOoswvxbnao4jyomxIPQLhVCvBzZnBDi5eilNYIqJsSDaP+g5N2odELcn3abK/kFLaDjaj/9IMb+IhZIfi8Fxp2q8e0xkvMSGM7S8SpX1adQhw8WHdzru7kqnWT7dFw+c5e+S8p7L95RGB3vPHp1AgZaVZ8SnZIHgMgjm0MJ3M3mqurJjHIHm/PKXrXeXGpiPc+wOSu42+amSb7P5jI1kc0xamI9vTb3Y6T0SxY+/3tPZGe7tPTBuK6FftbB406Hy28/KyWXiJXDUJ8XBC1k3zvbXLg+IsBlNrd5tjfW8bYP9/Z0eydPc5a9lpyeAtvv7PJWIyOFE3DN8m+wuUx9RIBFNgdmusTpXB43HTeg5iJ8NmzaxsP2zGnuc4KRsgZ9pc3F6iNirLC58qcZ2T087m+2Odf2I/MhCZfFm88dbI7pKKpotznm+RxedqCva9zwso4t9Mu3H5N2ICZjc6CLbE4k6bW5gK1M7Ql4XNi2GH3GNy3C+kAqaTElt9ZtK3wmfA6L6zyMzNygCNBuc9ZLEGjEUoy+d1xLH7R/r86rkNAHUnx7OCVGbVpPrwiYR9d98e19OiD/wH2JMH9tThV3oYoJ8SC0S4UQL0c2J4R4OXppjaCKCfEg2j8oeTcqnRD3p93mqn5p8uoExj23f06cuzDJ79WG7bzINJ4s6bQOyXxc84vrXFufvE7Jut38dRZh7vXdXJVOYNxhjPVvPvOpvmutk/Hhelp5evPJzO+C+mR0vPWx/nTpiCSyOZRAlc3h+y0/rZTX0ztclc250gjH8zrJTJJ1FmGeYXNWcLfNTTOUzQ3DwjeYPDLH4nkd2dxD6bW5HyNFLWbfBQSTTjQc98+/gf4jbO6zgxdhHhuBfGIvZa02xxfH0pmuE1JNNreYy2xuq1gusfbzuPsW1zP8PjYHdhHQKUkM2wqjMNXhRaz4WH3OLTH7xgnI5rpZZHPAO0qczuVx50vh3X4TmwsI3vA012dzsRVeUmemo2yumxU2V7hcXN35cX+bzcXq0JcPDnu6zZWvf+Gl3eambxBMAiDetTdkczheNufScZ2akzoiQ6/NebfT/v99WDrMS1ZgG4OXrLzNhfX5Qac1BApkHfh87mZzG1w2MZ2AxyXrLMK029yB4aVDI5Zi9L3j4tFLbG6obyWJFab5M2qBOrjycd3Xtwuv781nM5ZQWGcqctYZlojREUn+7QoVnUcVE+JBaJcKIV6ObE4I8XL00hpBFRPiQbR/UPJuVDoh7s+K7+bAz0yxH61Wtm9F380dYMadSjHxLh2Q51SKbw8nzCfTVB9XJgcpvl2Uc6/v5qp0CtvxWuT3HtMeroMXsg4uqULN4SiMzoL6eL1pTX0ERjY3z0c2l9TJH6xIke76eGXX1EdMeYbNWcGyOWZ0XueGNufKTTYnhvTa3I+R0lsr9v6YtDycocvmhvlXWcxXP6MD8mRySG7jYf7e+oAc8vVxZTLMAbeLJi6zuc2znbCOt90aF7R7kwHKTXU4u1VAB+fJ5xDYxsP8YzcFvNIrNQyWzT2ORTZXeIrBauFxW09zoFesDlX7BHecylZtY2b6Mqe5zwlGyhpUNvc4Vtjc1DiS7xEBjzv8GX74J20uVofM+cLV6w4257In/tHFwK+rZD6yuW7abY55HoaXL+jrGrfb5gqXe/J84dK53OaSMRmbK3m2yeZuQq/NeafZemJbvhbQd7UP/yQvWWFM/uRwpCyv4xIBfUE7k1LYyptsN+NKVfURGdptznrpAI1YitH3jovzGcZ/A7ylsNoZKXBfYAiXDi9y6MK3T7MC2fIizPwyIvsuoPhTNb5dlPPX5gKL+zejignxILRLhRAvRzYnhHg5emmNoIoJ8SDaPyh5NyqdEPdnxXdz+V++AjqBcXGw1YVJ3tLH7V4dL935XKWzFR238/lM18+mJ+US7vXdXJVOYNxhjDcxJpLMzavjpTufq3Q25wy25sOsH9ncAmRzjvZpYmRYeR28XDUv3TqusAX54IA/V2VzC3iGzVnBsjlm9PX5yOamAVWncsGw7nlS8jLCrJvAuDgGjHsfm/vsuDyfC3UODK9ikdp8NmP9yOZWcpnNbTPb4nW87dNlZ/2bHxSHZU4rTG5PtKcSHRAGnmp9+Vhz5EpG5Flkc7VPM6CWGfe7KANqmPJtfMgTn2L68rmbjhXmXWO1+WAd2dwCVtjcdNlVrcKqcW9uc1OdZfncTccKu6HNuR5LIkm7zQ3Fq7YB6JsZl1/Wsrlb6Vhhd6tPJjcRoNfmvMvFerJZvhbQn8qSY4HGId7cXDoBO2jN50IdK5J5NJbnE34ei1rabc46nINGLMXoe8e19EH79+q8CrO7A/pWMMjTK5XM51Y61qQfri7LBw8amDIR46/NqdwuVDEhHoR2qRDi5cjmhBAvRy+tEVQxIR5E+wcl70alE+L+tNucdfDxHoi8OtNf3IZDgKGtS97kD2pVdWCyteL5YJBM3321rpPufDb/jIhy7vXdXJUO0B/GgIVraZKZ47CqOsSy2tI7cMF94fqTOlflE4gXHfwum8PjDp/brgCLe9rcn7A725w3t8XrLZyPWMwzbM4Kls25hhvG3MHmrOCq3K7KRzZ3E3pt7sdI6SckfsNitty1NjfMv+qk8NUn30OB9XtFYvMyjBwWnEwG6FyVD1g/rjqLJJfZ3OZfvpaOq32/vVfaHLCzkjq4Dh1WsPf0ge+LFMG5FT4G1ucD1l4mJeFlkc0VnmKwGtP+XazLbA70itUBJ5axuQN8SsNxk/VJ2sHl+UynSQe6NaywuYB9uATDz+3LbS5Wh3w9LTtLroSqQ0qTza3PB8Rb/xYdtNucdZ6axpDxYY9j0qiyucKXl5J6WsGFPlJyOF2wTi7Jp8p/BUmvzXmn2TrAk49BZhmBkwsemvEXC2/+jI4l5X0JqsqnQ2eb1f/m+VjxsrnFtNvc8OXocOnQiKUYfWZcoDMc2spqXgV73M2ow1QE3AVOeDq0Kx/rvnCevM7+EpPMDfOx4gMpiTD/doVqzaOKCfEgtEuFEC9HNieEeDl6aY2gignxINo/KHk3Kp0Q96fd5qyDj/dA5NUB+tNfvqwEyEZX/lY+v00HxD9dZyutkghwr+/mqnSA/jBmmg9Y8TjzWD6/TQfEP11nM8piBYgOfpfNxfL5fMwqJW2uuw7SuVYnNpwo5xk2ZwUvsDn89JbNSWeKbO5yem3ux0gVh38QbF1ibDGcZ6B03nx+g87d7KlQ54B1FeuIJJfZ3DazLV7H1b5fslPnAlsXDwq4g63cTeeG9lSiA8KmS0sUssjmhh5nXcqoMe1fg5vqlNsc3ieug+2bdO5mT902l3mciAArbK58msnu4dW8bwEvHcwQU/2A2vt07mZPsrmX0W5zzCEo40dhjyN1cED4vDNs9Ob8Gp272ZNs7mX02px3uQxPTId44E3MchzGMMsuY3PefH6bDoh/uo4VOV3zopB2mzswvHRoxFKMPjMumaeV6vdSsg74rn+JDo5/rg4ozl7Hm5jw8q/KqjWPKibEg9AuFUK8HNmcEOLl6KU1giomxINo/6Dk3ah0QtyfdpvDP8PFfrRK6oNGb56u0gERrw7QZ6Q+J5L5JJfQMJ+wLK6PN6s+HbGMe303V6UD9Icx4Tz50nlztkSmhkvqePOsinfl49Wsqg+Iv6Q+IsnvsrlCuyQzT+ozanzHaXzVvHipsjmrV/d68+qIxTzD5qzgctsi9bEC1vTmM1XjO07jZXM4Xjb3UHpt7sdIucP/Nvt/HMxWwctuqI/zvJXN4fow8YXb+LMjmQ9/X1baN7Q5V31EkstsbvMvX0vH1b5fsqRzgTzvY3Oux4YVf6EdWPnEHodknqRCuc3F5l2EWWRz3lNSWI1p/24ephfO8z42F9DJ54MfIeEDy+X1WXCa23SgW8gKm+vblri7dxWe26cDyeYYHS+X12eBzVn/Fh202xxzCKpaLi7NjVi+b7W57m1c9dz6JfWRzXXTa3PeabYO8ORjkFlGwxivPmix8FoqIxXWCdRwKuWqG5nPfj2srA+Iv6Q+Ikm7zR0YXjo0YilGnxmX0bfy3F+dV2F2d+CuQTJWqq5kkvmAeFw3Mp8/f15SHxBfXh+voPDybxmp1jyqmBAPQrtUCPFyZHNCiJejl9YIqpgQD6L3J4jXo9IJcX/abc46+IR/iSN1XL+4gZ+9cJ586Vz5SOdyHRAfEAGLypuVCHCv7+aqdID+MMZKYJonWTpvPtK5VseK97oSuT5FN7/L5rzLrtvmuusgnVodsrs3H9HNM2zOCpbNSWelDtndm4/optfmfoyUnnL8vsBYFc4hoB8oHZOPdK7VqbK5zVjnzHoThVxmc1t0msmTl9W+X3bWv3l92dwrdQptbhutc2a9iUIW2dzQ46xLGTWm/bvI+F5eb7XofhuSTolO92kODyfKWWFzU9eoNQte1nsADAyBg2N1kE63zhq3DQiKGO02x7zrZZZdZulYT1pGnx8FRAb2j3QW6HTbXPIxL7z02px3ms//F+McDzzIZVuM5nQ5xs4X03ykc60Ojq+1OXncAtpt7sDw0qERSzH6zLgZ/X1Asg74rqVziY4VD8SZlIbtfD4izF+bU9FdqGJCPAjtUiHEy5HNCSFejl5aI6hiQjyI9g9K3o1KJ8T9abe56S9N/Oi8zufEVGcLfSInmxNNDJc0H+8KKHk1CSss2ET3+m6OkTrMfVUMniTrqmxO9OGyuY1YjYEHuQuvQom9UgNtT7A58BSa6gPLc40imxOLCbhGJmC9zVWNOx+idZhum5vGuAbCCmGbO71Af76+qfZf2M5THo8DvMORCtM65MedJ7ZmmPMo3z+Z0ffrZnjVEhkOCnRAI99FiCnA+86XsEvyNhpb/9M8zwouW3+zzW2e/2d5mHJe36WDW2RzogpwnAFLbroCGZsLr38mz+kmtbLig2MssjlQQWZ0Zr6ZMBwgmxNr+Jz4th/CwJ9MgCue18cb0LspXmJz3dPDhwWmebgc+cyHIt/VoPZf2A6Wzce/Pl2rsUof5P+990PjsA5k2nnabW4oXjU9tcsCp8HciBAML7Y5MhM8bjm9Nue1p7PT477Wv60WkIMVT6oJwQP8BeyF6XpmbM61/pk8N2JvTrMiI8O025x1WAWNWM0aYhhP6lhJglTxEEJgpuvt/A8+Hgw6DAP6zL44/wl2JTluLcci9o30JlQxIR6EdqkQ4uXI5oQQL0cvrRFUMSEeRPsHJe9GpRPi/qz4bs77C85UaqrzORHTAfHfS2Tym/FDWLgOSZ1zfOZwaqkFNMM5HJLJK99qvkSGe303x0h9ftpZawzImc88Nm6rDjkvJOdMAvf1jUyuRqs+XuVbzZdI8gybswK8FpbRcSUW06+ypwttLpbPPiyzGvG4gWfS4c+r5kskebbNTWMyj9+qxEAaVdsmkNIw/kKbS1otM+59bC6WlQjTa3M/RkqcIL7PeWuhuI5pvA6OJ5O30ghITbex973Me79DhT3TnIGUFQ/E8VjlNudVq50vEeYym9v828nSAfpJnWn8rWzOldIwnqmPd0TvfYF7nEo9y+a8WYkwi97L42wAABvDSURBVGwOeFDVcmHCvDpeQYtlOi61c3zMF0BYQMHla3i4Ppu7dr6ElxU2F7Ybb/xDba72lOESPMTX2pzrvg54FYbxTXW+fL6El3abYw7qYZvzLkevzgKbcxU/nGeTDggLL6qbn+YumS+RpNfmArbiOmHh9Ye3H6mDTxaBncOMldFxiZz/HThJ5U/rZN9wfTJp3GG+RJJ2mxu+jBwuHRqxmjXEML5KZ2q+DGcdUB+XzgbzByLDfevNBE9uTG2a6lSHyTOps3K+RIZ/y1pF51HFhHgQ2qVCiJcjmxNCvBy9tEZQxYR4EO0flLwblU6I+9Nuc9Ofz7y/fDE6+BcxVzzOM5C81cUrZYnzJS3UIfUDOt5krHFjOuGrTKQ3HxHmXt/NMVIHD+qImfZ1ZU7qeKWY/DM65KRYmVtz7dLpXifefA4BTDIl9RFJnmFzXhvybt1rbe7zYWeBrGeJTua0ErCnEp3CxyoI4+fL0pG1LebZNjeNIQeq0if7Dt3kDjYHWng1Rr9Jh4nP2NMWqrls7nJ6be7HSIkt+n1+WivPdRw7x1fpA6YWn7c58k0K6IAWXo3RJ3W8ItNTc/K+Nud8WZHe+RJJLrO5zbktp8uL2auWTkwfBFsKzLEOKwz/ZPJndHgFHH+VzW1GTQI6w0jvfAGdgF2KMItsDqyY/Lbkw2I6vCDAsleXVDJ/UueGNhd7nITrY4UV2lwgHxFmhc3lp/npNodPYXtiOt6snmVz4fXZYXOu+QI6gXxEmHabY14cwtvSu129Ol5BC+Z+M6e52sfGrWwuszjD9WHCdJp7EL02F7CV6RPYenEgPcilM31JWWxzW6gOvI5LAccDfV4nYAdV9ZlGJnUC9RFh2m3OOuSDRqxmDTGMz+sAfTCENSgegncob568zha9KSuljA5YP1Mpst2Vz/lqXofJRyT5a3OBTfKbUcWEeBDapUKIlyObE0K8HL20RlDFhHgQ7R+UvBuVToj7s+K7ueHBJ3Ag4nU+J6Y6Lv39VTJ5HMxXo7yefDtOBpeUEcQ35c1qmvBU4W73JcLc67s5Rurz085KYrx9XZlvnq9Spttv+GdVPUH7NB9cnKnatP58qfP53PC+RIZn2BxjEJY+s6S8+tOOmVF4hap6luhkihN45Lh0Mvnc4b5Ekmfb3DSGHOgpNmf1usrmcGTeDrxSVTaHu6y/L5Gk1+Z+jJR+ObLe+8j3QaAD9HGeSZv7nCB1vHniTMptzntf3TYXq/NQ8JL7Ekkus7kN2hOIJB1tOuL+KtbnbRRTIgJ6uepp/XmwhlgmuN2VzyU6OP6qfESYRTbXdPrwhgVOMTjPC21u8+SJRxyeWfjE7mMHsjkxZIXN8XZDKiyzudqXjj6bW1NPUs3bfZqPbE4kabc55hAU3pbeZfR0mwvnSerEEruPHcjmxJBemwvYynRtDd/UzprDFjKHaf54CIvabePKE0iRc0Rm5U2DGfcSHRB/VT4iTLvNHRheOjRiNWuIYTyvM9V3DQFErCJ4pVx5AilSH+uAZJL5DPW9OuF8hspX3ZcI89fmAov7N6OKCfEgtEuFEC9HNieEeDl6aY2gignxINo/KHk3Kp0Q92fFd3PDg0/4FytG53MipjPN01W6czDOE+iAJBkdpj5MJhtRH/7WpiJkSl79aa+k2jDSO+kiw72+m2OkPj/tbFnMME/XQsfdeSnc11VMUp/UAX8yzotFkqs0poNtqHzdiiaeYXPgiTrVZzZbt80x3TO2UmVzyXkJ794ma0sm9icsY3OFj3mR4dk2N40hB2LC+EZXhi6dwtNlTN+l+WibY3KQzT2FXpv7MVJiKX+fq5bXuPYtfn8cXiL1MXezufN9hU89544HmHzOf+J5x/mAE27S5vL35U1GJLnM5jbP8t1H8o6DR/Tmk1+jea8scaXNrkPmlBH2XDAuM+9AyurrsifQVzb3FBbZnOv0NO1O+sV04zFbwiWIuY/NWbJJwYztluQTXhggPvMY8C5I0cQKm3PZDaNQbnMxfRBJdveKyOZcOuHEPidK8qmaL+Gl3eaYg3p4uXiXkVen9ml8H5trspW75ZNP7BBcWB953Ep6bS5gK9OVSr5QDFsYHTIGNFrkbc7KzavjvfeAjisfMK4rH5CSV2coctBxlShjlyJJu80ND/+HS4dGrGYNMYwP6JyXIGO+GKsILpGDWjiZQ0q8Pq+D7xdLJfOxUsroDO+OF5zWx7sAhJd/s6Vy86hiQjwI7VIhxMuRzQkhXo5eWiOoYkI8iPYPSt6NSifE/Vnx3dz0xziv1FQH/5JljRv4RcxVOutm+SJY+UzzDOTjnRe+HYyIp2YqGKsDVhu2B3Q+9PoU5dzruzlG6rBcSmKYvskV7xp3KgLaeWfJ51OlMzWv8kg+paE95XWq8hQMz7A5Zntb+sySCtglFgzoM2pVNpe0Nq9O+L68WVXZB84/lo/VLptbwLNtbhpDDjQNIzuSufXVoTafKp1lNpfpArqX21xASmTotbkfI6Vfaqz3BfAeMRz0HP8sm+PvN5YP/17WfV+fE0xWwxFdIrU2l58vkeQym9uc22lqi4w3AZ19O7+s19sBqEPYBYb3nrGDq+6LVCBtN9x9H1l4XyLMIpsDc5x/uvJh0+X7ffwyw+FLzLjh/ZPsXmhPJTqkbKz75j8V1p7m8joiyQqb63668mFVOswlRlA255KNdS9PQDb3ONptbii+Zju9z+a6t99VNldrB7I5caDX5rzbALxQDPta/7ZayBwYneml/Lh4uORmLsmnSqfwvhgFV0pNdfbqiAztNndgeOnQiNWsIYbxrTr4EjkuaAci3jz78qnSGd6XtXimUkDfm1JJPiXzJcL8tTnvzP1yVDEhHoR2qRDi5cjmhBAvRy+tEVQxIR5E+wcl70alE+L+rPhubvojmldqqvM5gdu/V61xQUquzMEte+vAt09TYtoZQX4UkBLfvkbHWwdy3HCdRYB7fTfHSH1+2pkrBvwbr8VpVmTyIMArRdaWySczL9/IYfV4qZL7WqDjxbVuRRPPsDkroMrmXKOQl/iwP1dX2lOtzVn5u1yyJJ/u9eal/HEiYjzb5qYxLue6xOYuOYUx8flTj2yusM4iQ6/N/Rgp/ZJlvdmBN75b2Rx+s1v8sontKeBQh5PyAVIE57ZYB6+3zHztdaYiIs9lNrd5pnkfyZtRifeBdnzpEGbZgUuq0Oa2Wf29+bzsNMf0DefjSkbkWWRzTaeYkrBwO74EmFoeOVzTaY7XebHNMTpTkgtSVLHC5qYboOSpGA4Lt+NLgP22OUB2POu4sqrafjh/2Zxs7ia02xxzUG9avvexuaqXl7vZAQ6WzXXUWQTotTnvNIMTzbCv9W+rpbYdX7LCko90poaufKy+yS3tVSi5r5U6pFRg3Ypy2m3OeqkBjVjNGmIYb+ngPKft0yGs5C0RcNWK59txPudt7NIZSk3rBnT49mt1kvcVqLMI89fmVHQXqpgQD0K7VAjxcmRzQoiXo5fWCKqYEA+i/YOSd6PSCXF/Vnw3h3/R8/5ixeh8TuB2nA/I01W6qtMfSMabjyUSmJdwPjjMm880Pj8LgTqXzJcIc6/v5hipgze5Yph/W5eSNod1eKY15J1laOjgz9Z8mPapFBmfmQLvPJbURyR5hs15t0GVzYUTI/P0UvjYGIZV2Ur3/HrzIYebclV9RJJn29w0JrZ/ZHOkjmwuFi+bW0yvzf0YKf1SM3zPAu1AHAx6PuUF9HHY+U8wBKNTZXNekVqbGxYh/HI3lOJLvY3mRTb3UC6zuQ3aB4jkHSfmTYdljcfN2xzYRbzOC2wO1JlfJ0xuTD5WvGzuoSyyueRTmlwWsTBegXdSUjZ5Qumzudr7CtsB0AwLBvKp0pHNXcUKm5u6Q2Yb5MMyeb7S5visum2u6r5kc7+cdptj3vWalotrG8fyfJ/NlRyaLrSDjvVWpSObu4pem/NO8+fzma6w4RvNWXPYQkbyL02Bgw8zVkYnfBbDubXms593UJDMqZ9ZY9O+m7/OhfMlwrTb3IHhpUMjVrOGGMZbOnyeOCtX6UCe5N5jdHgFPCletWQ+VrwrGXIevWrD9mn3abxXR4T5N+sqOo8qJsSD0C4VQrwc2ZwQ4uXopTWCKibEg+j9CeL1qHRC3J92m8M/e7kORLyO9Yub1X4QHI5rpUQmD3S8p8Jb6RQebGtPx9ZScXXPpwR0au9XAO713RwjdbAzVwzo+20kc+YzxzpY/+Y6gXn05pNhON0r7wvodNyvsHiGzZGHqaTNfT7Hakzz9HoKyJNRe4qOl0K7HOrc7b6a7ldYPNvmpjGkP1q5yeZiOl5kczF9QdJrcz9GSr8cnd8ov1d5O7PaZXMBHdB3+++8JF8SPzumOlaXwvsK5HPWkc0t5jKb26A9gciAc7kiZXO8zjeML2l3PsNxq+4rY0+yuQtZZHPk6YnsTvqXbK5bx+qbOekM/yQPUN335c1nmhifj8iwwuam7hBeviVh28+Fu1++srkSnSlg3EtOhVX5WGGyucW029xQfM225G3OuiqbK9GZ8tD7cp0KGX3RRK/NeZcLeBEY9sWP1rzNgZwZKUbHaw230ik89UznN6AzlMrcV8epUB63gHabOzC8dGjEatYQw3hLZ5rtdFwsBfT59kfoWEXb4NTw+YAlNNVxrS4wbjgfHOydLxHm32pQ0XlUMSEehHapEOLlyOaEEC9HL60RVDEhHkTvTxCvR6UT4v602xzzi5VXaqpj/cJV1b4fiK7E5L5cwaALr5ZXKNQJrAcsBYYo0Uml+FOtSkpY3Ou7OUbq89POXDHMv12JlexJXoqsG5M22MOufKp0wJ8upmvM+wxI6kxHkc0t4Bk2R+7nx9lcsg7htK2wmN3kdapsrsqSCh/P01Fkcwt4ts1NY7z+6B1XNleoEwgmx72hzdWeCgVm3fMkswS/zz3Ly7wbfpjMWQePSya/T/IgVWsHwyG8CoF8CnWSN4XXWLgySZsb5i+bW8llNrc5l910WUw3G5nJwYbwuJdsm2nfh9rcOTigs6+t9W9XDltuvoa3E5gskWGRzYGdkFl2JWF8AO+k57ADroSnmVxrT7U2t/1cG8O6Tbt/Pj8WtjefKptjFpJsbgErbC6/DV5gc0z7Q+2p1eZcHUmdO9hcwL5FmHabG4qvWXZht+KX9XqbK6mnFXaVDll/L7e1OW+MSNJrc97lAp5sw7748B+zOV4fDIHDhrKBLWHpZMw3YDF5HbLmLqmkdZbrWF1kcwtotznrcA4asZo1xDDe0gGp8vpgCKBvDeEVOff6tkwFgUgmn7DORtTfm5J1icwHxMd08rcmwvzbFSo3jyomxIPQLhVCvBzZnBDi5eilNYIqJsSDaP+g5N2odELcnxXfzQ0PPoEDEa/zOYHbgf4Gf1kLJJ+sNtDxKlvJeJMs1LFEeKmqOm/+/L1qtfoCcK/v5hipg525Yrx9QTufOdD0AnILe4rrfpt0SOOeSlXVefPXwaXZpC8snmFzVkCVzXn1px29OiRYh5dtmpfMY2wYdpXNFdrlUKdJX1g82+amMWH/IsNkcyU6VphsTpTQa3M/Rsq91Gz2/8sA72su/zrrVNncBpe49cpGCmaSmea2RgeEeV/uQDxfZ5B/YL7OXWRzi7nM5jZoTyCSdzRX5HQJDrN1lS5go1gtnMyDbG7zrBMQf7AqVyaZ+xqOK5tbzCKbA8su+XTNh007frdNibNYRwPvAYFsZLrf2eZc68SK965wZj0w81VbHxFmhc15bWWqsNjm+I4W5HIn4dNL5nO5zTXl483EckzZ3FNotznm3NG0XF5pc6CLbK7b5q6tjwjTa3PeaQYvAtOXEd6DXC9HeKvU2lzyVOuax9j99ukMIwvr4zqFbUb+gYJbazt5ohcu2m3uwPDSoRGrWUMM4y2dEn0gZYmfpaz2qci+i1VkRo1v79MB+XvvC8SX1MeaAkbnEO+tswjzr/oqOo8qJsSD0C4VQrwc2ZwQ4uXopTWCKibEg2j/oOTdqHRC3J92m6v6BW0zfikb6lg/h4GfyWJ5ukoHRAJFOHeJnS6TOjgfVxpV9xWrA1AL6wfWoejgXt/NMVIHb3LFMP925emyA9dYWOT8p0tn36sjH+/uLbyvWB2AWmF9pu2iiWfYHLlcbmtzTXXIPDa+YUwdvPm40gAda/PxUl6fqsSEl2fb3DTG649eqefanOt0zFBy1AW5MYKFNldSH9ncTei1uR8jpQ//1nsQeD/i20E+AX0cljyFnYOvtTkwL0x30Kv8dAmm0pLK53MeFK9nUc5lNrd5pnkfGXAuvh3kk9zJ+/wvtzmr71WnOSY3RhDEA1k+h0A+ll26HvMiySKbc52ept1J/3LZHJNPcid/F3fe5qbHFr57lc3lu08VwjaXuZG++oR1hJcVNjd1h+TLSDKssCNJ0uZK6nkgk084Ddw9IFhocwvqE9YRXtptDh+dQAwTH3v489tpKrje5krqaQXXPn7CaZTnk1nhHfXJH3uFi16b807z/slpSZEvFMMWMnI61nQIEJnZimB7ZE4uJflkngGF98VYScZ/S+oTTkbEaLe54eH/cOnQiNWsIYbxlg5OldQHQwB965JLBKRK5rPNbtkrAvJ0ZVJ1X2SqZFbhfKxBvcmIDH9tTkV3oYoJ8SC0S4UQL0c2J4R4OXppjaCKCfEg2j8oeTcqnRD3Z8V3c9Mf47xSU53PCdy+v2qJD1N1lc662dpTISlVdSCtKs5WV59CHUsksG5JfdHBvb6bY6QOduaKqerryhzog/YY5PYL1N+lEzDQqvqU6JDGnVm3tc82gXmGzVkBVTbn1eEz5/V5NTzKHWzOK9u0TpJ1zttcVX1Ekmfb3DTG649WL1KHzK3D5rynlZJxZXOxfFxpiDy9NvdjpNxLxGa/kYHz/yttbvjK46onziH2SsUXbdr3tjYHNF35uNIQeS6zuQ3aE4jkHcflTXt9fjmut7l9zFDHZS6F+/CX2NzmXLf8n6KPRTYH9kD+qZgM27d/j41MPL7EJJbcxsP2zGnuc4KRsgZ9pc3pNPdEVtjc9DkfXr4lYWEdRgoLFtqcy57IfEjCdfbmc7nN1a5b2dwy2m2Oec43Ld/fY3PJmIzN5YvD5yObEzF6bc677MBJZNjX+rfVAtrBVq/dyUmLwbdM6nTbCp8Jn4O3Pnkrz9scHlc2t4x2m7NepkAjVrOGGMZbOiBVXgdfsobg27EOKAW5/YbBYZF9F2vSGTW+vU8H5F9yX7H6iDB/bU4Vd6GKCfEgtEuFEC9HNieEeDl6aY2gignxINo/KHk3Kp0Q92fFd3O1v1gxOp8TzLjDTHCertLhYL4UIBlGofAQGquzNz2vSMnd4XWSr3O4PiLAvb6bY6QOe8kVA+IZ4yOdcZg8s6DDdQDt4YEYLJ3A/Frx3vsqMQ6Qf0mdk/URXp5hc97l4rU5a5QqmyODvQHl9fTSbXMxnT6b6163ooln29w0xuVrsjkvsrlYJrK5xfTa3I+R0i9Z1vsIeE8BxuT1LMZGMSDJ2FttcvvheubnhUzmPG6HzfFFBmqFdXatf5HkMpvbZtvDigw4GjnuJTYHdtFUIWNzTN+MDi8Cxq2yuZgOSIzUwfUJeK6Iscjmkk8zcnkxYXjZkQkwXZjg2Ong/GeTjhdXSQP5ZGzuAKMzTSBc562u5oJhhc31bW9vWGzVBuyPDH63zeXdpOk0F8sqkE/tfYkw7TaHj1Qghon32lbA5nBuv9zmmNNKRudCm7tw3Ypyem3OO83ghWLYF++rvM15AzB455AvU0wNGRFmy7m2Mejova/ky13r20NJnWVzi2m3uQPDS4dGrGYNMYzHKVl5MvmDIfCg1i1YN2ip8e3DyKmO99aGjQGpc2KBZHBKXp2hFJmPFe8tjsjwbxpUcR5VTIgHoV0qhHg5sjkhxMvRS2sEVUyIB9H7E8TrUemEuD/tNlfyy9ehy1QH/FIWyAfkGUg+UwfrvsD9MprDUXgFr74VFkjepeNVBpPurXCJjghzr+/mGKnPT89yxQTysWL4zGPjMjreNIYdydyq9K0w8KdruOGfGfdP1qdKR2R4hs2R27vc5sKJBfLMDBebwc/nOPtVdmPp48j8uFiHl22ar8xjXmR4ts1NY8h1/wttznU6DuA6rcjmyMREjF6b+zFS4tD+PRdYXsbv/+m4523v0p/SUYdpniCNvM19/stU35vPXtxbajD13r6yuadzmc1tnm25jww4mmvcw7bH4+ZtbpqPFenKE+SQtLlhd6CJpXACrmrL5sSXRTYXOFWB7qTTYWNibGsqWHjEKHFMUqrK5pgEMqe5zwlGyhpUNvdrWWFzU3cILxdvWNLFkjaXrwM5OlPPoX0U2pzLnkg7IAmXxZuPbO4ptNtc4NDExxfaVizP2vPFJdum4zSXjMnYHOgim/u19Nqcd5rBk3/YF/sUb3OM/TE+ZdGxbfg6lOTmTcmVT7et8JnwOXjrU3tiFS7abc56eQGNWM0aYhiPU2LyxFnxa91VB0aKbCezOrcHdEj9QDIBkX0XMLlTNb69W0eE+WtzgU3ym1HFhHgQ2qVCiJcjmxNCvBy9tEZQxYR4EO0flLwblU6I+7Piu7n8L2iHLlMd6xc3ZtxzuysY588HY52SX+6k8ywdEeZe380xUgfPcsVMxx3aKEiSLB02VhfTGvIpSedBOiLDM2yOPEwlbe7Pn15bxJmHgxmFqnpK5+Y6IsmzbW4aw/gayE02J5076IgkvTb3Y6TEof17zrK8jDzugXGvsrnPDq/C5dtPOmt0RJLLbG6D9gQiA442Hdeytm6be/r2k84aHZFkkc3xpyqmO+l01unpfPVCmzvgUrh8+0lnjY5IssLm+k4x3jCw7IZ2s/g051W4fPtJZ42OSNJuc/hIBWKYeKwTs9fFpzm+O8jn6dtYOlhHJOm1Oe80709SlpRlQ4yJeG0O5AwaLfKnWpAPzlM6T9cRGdpt7sDw0qERq1lDDONxSuQlxnwxVhFwPliNb5fOO3REmL82591pvxxVTIgHoV0qhHg5sjkhxMvRS2sEVUyIB9H7E8TrUemEuD/tNlf+CyOj8zkRjt/HkI04f75dOi/QCa83Uci9vptjpA7LxRVD5jMcPWlz03snpaTzIB3v+hRNPMPmrIA1NvfnasbmmuognRfoyOYW8Gybm8bggRibwzGyOekEdHgFUUKvzf0YKX34/3w+lteQxz1rXKAvm5NOWGcaLJtbw2U2t0F7ApEBR5uOa+lPXy5kc9Ih0VHuQhbZnPeUhLuTToeNCYw7tbxpJmRiT9/G0sE6OFI2t4wVNjd9joWXnTfMq/M5gQUt7rb9pLNGB4fJ5pbRbnPMc6xp2fE25zoGThunYZdvP+ms0cExsrll9Nqcd7kMT0ygr/VvsmWqidVAMIgkayKdF+h4H8OiiXabOzC8dGjEatYQw3icEq9jXXWVDutL5306YP1vsrmF/LU5sMnFGVVMiAehXSqEeDmyOSHEy/l/bYzPBqDFeIsAAAAASUVORK5CYII=" alt="" />
解释如下:
[ .] ******** Show Sink Info ********
[ .] Max tmds clk is
[ .] Support video mode:
[ .] 1920x1080p@60Hz
[ .] 1920x1080p@50Hz
[ .] 1280x720p@60Hz
[ .] 1280x720p@50Hz
[ .] 720x576p@50Hz
[ .] 720x480p@60Hz
[ .] Support video color mode:
[ .] RGB
[ .] YCbCr422
[ .] YCbCr444
[ .] Support video color depth:
[ .] 24bit
[ .] 30bit
[ .] 36bit
[ .] Support audio type:
[ .] LPCM
[ .] Support max audio channel is
[ .] Support audio sample rate:
[ .]
[ .]
[ .]
[ .]
[ .]
[ .]
[ .]
[ .] Support audio word lenght:
[ .] 16bit
[ .] 20bit
[ .] 24bit
[ .]
[ .] LPCM
[ .] Support max audio channel is
[ .] Support audio sample rate:
[ .]
[ .]
[ .]
[ .]
[ .]
[ .]
[ .]
[ .] Support audio word lenght:
[ .] 16bit
[ .] 20bit
[ .] 24bit
[ .]
[ .] AC3
[ .] Support max audio channel is
[ .] Support audio sample rate:
[ .]
[ .]
[ .]
[ .] Support audio word lenght:
[ .] 16bit
[ .] 20bit
[ .] 24bit
[ .]
[ .] DTS
[ .] Support max audio channel is
[ .] Support audio sample rate:
[ .]
[ .]
[ .] Support audio word lenght:
[ .] 20bit
[ .] 24bit
[ .]
[ .] DSD
[ .] Support max audio channel is
[ .] Support audio sample rate:
[ .]
[ .] Support audio word lenght:
[ .] 20bit
[ .]
[ .] E-AC3
[ .] Support max audio channel is
[ .] Support audio sample rate:
[ .]
[ .]
[ .] Support audio word lenght:
[ .] 20bit
[ .] 24bit
[ .]
[ .] DTS-HD
[ .] Support max audio channel is
[ .] Support audio sample rate:
[ .]
[ .]
[ .]
[ .]
[ .]
[ .]
[ .] Support audio word lenght:
[ .] 20bit
[ .] 24bit
[ .]
[ .] MLP
[ .] Support max audio channel is
[ .] Support audio sample rate:
[ .]
[ .]
[ .]
[ .] Support audio word lenght:
[ .] 24bit
[ .]
EDID真实数据块,请参考标准文档仔细核对的更多相关文章
- 无法安装 VMware Tools。尝试访问安装 VMware Tools 所需的图像文件“/usr/lib/vmware/isoimages/linuxPreGlibc25.iso”时出错: 2 (No such file or directory)。请参考产品文档或知识库文章 2129825,了解关于如何获取该客户机操作系统的 VMware Tools 软件包的详细信息。
无法安装 VMware Tools.尝试访问安装 VMware Tools 所需的图像文件"/usr/lib/vmware/isoimages/linuxPreGlibc25.iso&quo ...
- {03--CSS布局设置} 盒模型 二 padding bode margin 标准文档流 块级元素和行内元素 浮动 margin的用法 文本属性和字体属性 超链接导航栏 background 定位 z-index
03--CSS布局设置 本节目录 一 盒模型 二 padding(内边距) 三 boder(边框) 四 简单认识一下margin(外边距) 五 标准文档流 六 块级元素和行内元素 七 浮动 八 mar ...
- padding(内边框), border(边框), margin, 标准文档流, 块级元素和行内元素, 浮动 ,margin的用法
盒模型 在CSS中,"box model"这一术语是用来设计和布局时使用,然后在网页中基本上都会显示一些方方正正的盒子.我们称为这种盒子叫盒模型. 盒模型有两种:标准模型和IE模型 ...
- python 全栈开发,Day48(标准文档流,块级元素和行内元素,浮动,margin的用法,文本属性和字体属性)
昨日内容回顾 高级选择器: 后代选择 : div p 子代选择器 : div>p 并集选择器: div,p 交集选择器: div.active 属性选择器: [属性~='属性值'] 伪类选择器 ...
- CSS标准文档流 块级元素和行内元素
标准文档流 什么是标准文档流 宏观的将,我们的web页面和ps等设计软件有本质的区别,web 网页的制作,是个“流”,从上而下 ,像 “织毛衣”.而设计软件 ,想往哪里画东西,就去哪里画 空白折叠现象 ...
- [转]unity3d 脚本参考-技术文档
unity3d 脚本参考-技术文档 核心提示:一.脚本概览这是一个关于Unity内部脚本如何工作的简单概览.Unity内部的脚本,是通过附加自定义脚本对象到游戏物体组成的.在脚本对象内部不同志的函数被 ...
- 前端css盒模型及标准文档流及浮动问题
1.盒模型 "box model"这一术语是用来设计和布局时使用,然后在网页中基本上都会显示一些方方正正的盒子.我们称为这种盒子叫盒模型. 盒模型有两种:标准模型和IE模型.这里重 ...
- 浅谈,html\css脱离标准文档流相关
(个人知识有限,难免有误,请见谅) 标准文档流,顾名思义,是要按照一定规矩排列的,默认的就是元素会从左至右,从上至下排列,块级会独占一行,行内元素会和小伙伴们共享一行. 本来在标准文档流下,各个元素相 ...
- css标准文档流
css标准文档流 所谓的标准文档流指的是网页当中的一个渲染顺序,就如同人类读书一样,从上向下,从左向右.网页的渲染顺序也是如此.而我们使用的标签默认都是存在于标准文档流当中. 标准文档流当中的特性 空 ...
随机推荐
- MySql 自适应哈希索引
一.介绍 哈希(hash)是一种非常快的查找方法,一般情况下查找的时间复杂度为O(1).常用于连接(join)操作,如Oracle中的哈希连接(hash join). InnoDB存储引擎会监控对表上 ...
- 提交cookie登录
# coding:utf-8import requests # 先打开登录首页,获取部分cookieurl = "https://passport.cnblogs.com/user/sign ...
- 《Python机器学习》笔记(六)
模型评估与参数调优实战 基于流水线的工作流 一个方便使用的工具:scikit-learn中的Pipline类.它使得我们可以拟合出包含任意多个处理步骤的模型,并将模型用于新数据的预测. 加载威斯康星乳 ...
- 20170405-STO库存转储单
1.工厂间转储: (1)MB1B 移动类型 301 工厂到工厂(一步)转账,->简单明了一步转储过账后会产生 GR,MITA增加了,MIZH减少了,MB03, **会产生 GR,如果俩工厂 标准 ...
- ABAP权限检查,TCode与权限对象进行关联
一.确认权限对象,和关联字段: Tcode:SU21 维护权限对象例如"M_MSEG_WMB",它关联字段为'WERKS'M_MSEG_WMB 物料凭证:工厂 二.在ABAP代码中 ...
- Redis分布式锁的python实现
案例1: #!/usr/bin/env python # coding=utf-8 import time import redis class RedisLock(object): def __in ...
- 统计easyui datagrid某列之和显示在对应列下面
项目需求要在表格下面加一行统计求和的,结果网上搜寻了一堆,要么说的不详细,高深大牛们的见解:要么实现不了,搜寻老半天修改出一个可以用的,做一下学习记录,新手菜鸟,欢迎指正和新解决方案. 最终效果图: ...
- LeetCode_Easy_471:Number Complement
LeetCode_Easy_471:Number Complement 题目描述 Given a positive integer, output its complement number. The ...
- VM and Docker Container
https://www.zhihu.com/question/48174633 在开始讨论前,先抛出一些问题,可先别急着查看答案,讨论的过程可以让答案更有趣,问题如下: Docker 容器有自己的ke ...
- $用python实现快速排序算法
本文主要介绍用python实现基本的快速排序算法,体会一下python的快排代码可以写得多么简洁. 1. 三言两语概括算法核心思想 先从待排序的数组中找出一个数作为基准数(取第一个数即可),然后将原来 ...