dfs序七个经典问题
 参考自:《数据结构漫谈》-许昊然

dfs序是树在dfs先序遍历时的序列,将树形结构转化成序列问题处理。

dfs有一个很好的性质:一棵子树所在的位置处于一个连续区间中。

ps:deep[x]为x的深度,l[x]为dfs序中x的位置,r[x]为dfs序中x子树的结束位置

1.点修改,子树和查询

  在dfs序中,子树处于一个连续区间中。所以这题可以转化为:点修改,区间查询。用树状数组或线段树即可。

2.树链修改,单点查询

  将一条树链x,y上的所有点的权值加v。这个问题可以等价为:

  1).x到根节点的链上所有节点权值加v。

  2).y到根节点的链上所有节点权值加v。

  3).lca(x,y)到根节点的链上所有节点权值和减v。

  4).fa(lca(x,y))到根节点的链上所有节点权值和减v。  

  上面四个操作可以归结为:节点x到根节点链上所有节点的权值加减v。修改节点x权值,当且仅当y是x的祖先节点时,x对y的值有贡献。

  所以节点y的权值可以转化为节点y的子树节点贡献和。从贡献和的角度想:这就是点修改,区间和查询问题。

  修改树链x,y等价于add(l[x],v),add(l[y],v),add(l[lca(x,y)],-v),add(l[fa(lca(x,y))],-v)。

  查询:get_sum(r[x])-get_sum(l[x]-1)

  用树状数组或线段树即可。

3.树链修改,子树和查询

  树链修改部分同上一问题。下面考虑子树和查询问题:前一问是从贡献的角度想,子树和同理。

  对于节点y,考虑其子节点x的贡献:w[x](deep[x]-deep[y]+1) = w[x](deep[x]+1)-w[x]*deep[y]

  所以节点y的子树和为:

  

  ps:公式中的v[i]为手误,应为w[i]。

  所以用两个树状数组或线段树即可:

    第一个维护∑w[i]*(deep[i]+1):支持操作单点修改,区间和查询。(这也就是问题2)

    第二个维护∑ w[i]:支持操作单点修改,区间查询。(这其实也是问题2)

4.单点更新,树链和查询

  树链和查询与树链修改类似,树链和(x,y)等于下面四个部分和相加:

  1).x到根节点的链上所有节点权值加。

  2).y到根节点的链上所有节点权值加。

  3).lca(x,y)到根节点的链上所有节点权值和的-1倍。

  4).fa(lca(x,y))到根节点的链上所有节点权值和的-1倍。

  所以问题转化为:查询点x到根节点的链上的所有节点权值和。

  修改节点x权值,当且仅当y是x的子孙节点时,x对y的值有贡献。

  差分前缀和,y的权值等于dfs中[1,l[y]]的区间和。

  单点修改:add(l[x],v),add(r[x]+1,-v);

5.子树修改,单点查询

  修改节点x的子树权值,当且仅当y是x的子孙节点时(或y等于x),x对y的值有贡献。

  所以从贡献的角度考虑,y的权值和为:子树所有节点的权值和(即区间和问题)

  然后子树修改变成区间修改:add(l[x],v),add(r[x]+1,-v);

  这就是点修改,区间查询问题了。用树状数组或线段树即可。

6.子树修改,子树和查询

  题目等价与区间修改,区间查询问题。用树状数组或线段树即可。

7.子树修改,树链查询

  树链查询同上,等价为根节点到y节点的链上所有节点和问题。

  修改节点x的子树权值,当且仅当y是x的子孙节点时(或y等于x),x对y的值有贡献。

  x对根节点到y节点的链上所有节点和的贡献为:w[x](deep[y]-deep[x]+1)=w[x]deep[y]-w[x]*(1-deep[x])

  同问题三,用两个树状数组或线段树即可。

dfs序七个经典问题[转]的更多相关文章

  1. dfs序七个经典问题

    update-2018.07.23: 原文问题五思路描述有误,已更正. 参考自:<数据结构漫谈>-许昊然 dfs序是树在dfs先序遍历时的序列,将树形结构转化成序列问题处理. dfs有一个 ...

  2. 【转载】dfs序七个经典问题

    作者:weeping 出处:www.cnblogs.com/weeping/ 原文链接 https://www.cnblogs.com/weeping/p/6847112.html 参考自:<数 ...

  3. dfs序七个经典问题(转)

    我这个人不怎么喜欢写轻重链剖分和LCT 还是喜欢dfs序.括号序列之类的 毕竟线段树好写多了 然后就有了这篇转载的文章 写在这边以后有时间看看 原文链接:https://www.cnblogs.com ...

  4. 【Codeforces163E】e-Government AC自动机fail树 + DFS序 + 树状数组

    E. e-Government time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...

  5. DFS序详解

    dfs序就是一棵树在dfs遍历时组成的节点序列. 它有这样一个特点:一棵子树的dfs序是一个区间. 下面是dfs序的基本代码: void dfs(int x,int pre,int d){//L,R表 ...

  6. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

  7. DFS序 参考许昊然《数据结构漫谈》

    网上特别讲DFS序的东西好像很少 太简单了? 实用性不大? 看了论文中 7个经典问题, 觉得挺有用的 原文 "所谓DFS序, 就是DFS整棵树依次访问到的结点组成的序列" &quo ...

  8. BZOJ 2819: Nim( nim + DFS序 + 树状数组 + LCA )

    虽然vfleaking好像想卡DFS...但我还是用DFS过了... 路径上的石堆异或和=0就是必败, 否则就是必胜(nim游戏). 这样就变成一个经典问题了, 用DFS序+BIT+LCA就可以在O( ...

  9. BZOJ 3439: Kpm的MC密码( trie + DFS序 + 主席树 )

    把串倒过来插进trie上, 那么一个串的kpm串就是在以这个串最后一个为根的子树, 子树k大值的经典问题用dfs序+可持久化线段树就可以O(NlogN)解决 --------------------- ...

随机推荐

  1. c# 以多个字符串分隔字符串数据 分组 分隔 split 正则分组

    string str="aaa[##]ccc[##]ddd[##]bb" Regex regex=new Regex("[##]");//以 [##] 分割 s ...

  2. [Leetcode] combinations 组合

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  3. javascript 随机数区间

    生成[0,max]之间的随机数 parseInt(Math.random()*(max+1),10);Math.floor(Math.random()*(max+1)); 生成[1,max]之间的随机 ...

  4. BZOJ_day9

    哇,一道巨大的水题害得我wa了无数次... 总结一下教训 大家一定记住(给我自己看的)  位运算 一定要加()!!! 重要的事情说三遍  位运算 一定要加()!!! 位运算 一定要加()!!! 位运算 ...

  5. YUI Compressor是如何压缩JS代码的?

    YUI Compressor 压缩 JavaScript 的内容包括: 移除注释 移除额外的空格 细微优化 标识符替换(Identifier Replacement) YUI Compressor 包 ...

  6. 2015年网易校招Java开发工程师(技术架构)在线笔试题

    1.  程序和进程的本质区别是? A.在外存和内存存储 B.非顺序和顺序执行机器指令 C.独占使用和分时使用计算机资源 D.静态和动态特征 参考答案分析: 进程与应用程序的区别: 进程(Process ...

  7. Java多线程1:Java中sleep,wait,yield,join的区别

    1.sleep()方法 在指定时间内让当前正在执行的线程暂停执行,但不会释放“锁标志”.不推荐使用. sleep()使当前线程进入阻塞状态,在指定时间内不会执行. 2.wait()方法 在其他线程调用 ...

  8. Kafka自我学习2-Zookeeper cluster

    Test enviroment : zoo1, zoo2, zoo3 cluster 1. Install zookeeper, package in kafka [root@zoo1 ~]# pwd ...

  9. 编写一个 Chrome 浏览器扩展程序

    浏览器扩展允许我们编写程序来实现对浏览器元素(书签.导航等)以及对网页元素的交互, 甚至从 web 服务器获取数据,以 Chrome 浏览器扩展为例,扩展文件包括: 一个manifest文件(主文件, ...

  10. C# 序列化理解 2(转)

    一.概述 序列化是把对象转变成流.相反的过程就是反序列化. 哪些场合用到这项技术呢? 1. 把对象保存到本地,下次运行程序时恢复这个对象. 2. 把对象传送到网络的另一台终端上,然后在此终端还原这个对 ...