倍增求 LCA 是在线的,而且比 ST 好写多了,理解起来比 ST 和 Tarjan 都容易,于是就自行脑补吧,代码写得容易看懂

  关键理解 f[i][j] 表示 i 号节点的第 2j 个父亲,也就是往上走 2个节点

  求 LCA 的时候先倍增让两点深度一样,再倍增求

  另外丢两个链接,这两个有详细讲解

    ST 算法 http://www.cnblogs.com/hadilo/p/5837517.html

    Tarajan 算法 http://www.cnblogs.com/hadilo/p/5840390.html

  可能代码缩进不是很好看,因为我的 Emacs 用的默认缩进

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std; const int N=,L=;
int m,first[N],next[N],d[N],f[N][L];
inline void dfs(int x,int dep)
{
d[x]=dep;
m=max(m,dep);
for (int i=first[x];i;i=next[i]) dfs(i,dep+);
}
int log2(int x)
{
int k=;
while (x>)
{
x>>=;
k++;
}
return k;
}
int main()
{
int i,j,n,s,x,y,root;
scanf("%d",&n);
for (i=;i<=n;i++)
{
scanf("%d",&f[i][]);
if (!f[i][]) root=i;
next[i]=first[f[i][]];
first[f[i][]]=i;
}
dfs(root,);
s=log2(m);
for (j=;j<=s;j++)
for (i=;i<=n;i++) f[i][j]=f[f[i][j-]][j-];
scanf("%d",&n);
while (n--)
{
scanf("%d%d",&x,&y);
if (d[x]<d[y]) swap(x,y);
s=log2(d[x]-d[y]);
while (d[x]>d[y])
{
if (d[x]-(<<s)>=d[y]) x=f[x][s];
s--;
}
s=log2(d[x]);
while (s>-)
{
if (f[x][s]!=f[y][s])
{
x=f[x][s];
y=f[y][s];
}
s--;
}
printf("%d\n",x==y?x:f[x][]);
}
return ;
}

求LCA最近公共祖先的在线倍增算法模板_C++的更多相关文章

  1. 求LCA最近公共祖先的在线ST算法_C++

    ST算法是求最近公共祖先的一种 在线 算法,基于RMQ算法,本代码用双链树存树 预处理的时间复杂度是 O(nlog2n)   查询时间是 O(1) 的 另附上离线算法 Tarjan 的链接: http ...

  2. LCA(最近公共祖先)之倍增算法

    概述 对于有根树T的两个结点u.v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u.v的祖先且x的深度尽可能大. 如图,3和5的最近公共祖先是1,5和2的最近公共祖先是4 在本篇中我们先介 ...

  3. 求LCA最近公共祖先的离线Tarjan算法_C++

    这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法 ...

  4. LCA最近公共祖先(Tarjan离线算法)

    这篇博客对Tarjan算法的原理和过程模拟的很详细. 转载大佬的博客https://www.cnblogs.com/JVxie/p/4854719.html 第二次更新,之前转载的博客虽然胜在详细,但 ...

  5. 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)

    题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...

  6. lca最近公共祖先与树上倍增。

    https://vjudge.net/contest/295298#problem/A lca 的题目 求任意两点的距离. A题是在线算法,用st表rmq来实现. https://blog.csdn. ...

  7. 【LCA最近公共祖先】在线离线

    [在线] 1.倍增法 现将深度较大的跳至与深度较小的统一深度.预处理$fa[u][i]$表示$u$往上跳$2^i$个单位后的祖先,则就可以像快速幂一样,将移动的步数化为二进制,如果第$i$位为$1$, ...

  8. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  9. LCA 最近公共祖先 Tarjan(离线)算法的基本思路及其算法实现

    首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵 ...

随机推荐

  1. python简单的数据清洗,数据筛选方法归类

    创建数组有两种方式,1.直接赋值 2.随机变量生成随机生成包括4种:np.arange(20),np.linspace(0,10,5),np.logspace(0,2,5),np.random.ran ...

  2. 【JS笔记】闭包

    首先看执行环境和作用域的概念.执行环境定义了变量或函数有权访问的其他数据,决定它们的行为,每个执行环境都有一个与其关联的变量对象,保存执行环境中定义的变量.当代码在一个环境中执行时,会创建变量对象的一 ...

  3. App测试基本流程详解

    1 APP测试基本流程 1.1流程图 1.2测试周期 测试周期可按项目的开发周期来确定测试时间,一般测试时间为两三周(即15个工作日),根据项目情况以及版本质量可适当缩短或延长测试时间. 1.3测试资 ...

  4. Python Flask之旅

    <Pyhton Flask之旅> 以前学flask时做的总结,搬运到这里,markdown格式写的有点乱,凑合看吧. 参考博客 http://blog.csdn.net/nunchakus ...

  5. BZOJ 1923 SDOI2010 外星千足虫 异或方程组+bitset

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1923 懒得贴题目了......这就是解一个异或方程组的裸题...... YY了一下异或方程 ...

  6. HDU 3698 Let the light guide us(DP+线段树)(2010 Asia Fuzhou Regional Contest)

    Description Plain of despair was once an ancient battlefield where those brave spirits had rested in ...

  7. 安装一台Linux练习机前的考虑——主机规划与磁盘分区

    要安装一台Linux主机并不是那么简单的事,我们必须要针对distributions的特性.服务器软件的能力.未来的升级需求.硬件扩充性需求等来考虑,对于磁盘分区.文件系统.Linux操作较频繁的目录 ...

  8. beta版本冲刺七

    目录 组员情况 组员1:胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:恺琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:何宇恒 组员11:刘一好 展示组内最新 ...

  9. 【linux】linux中tree的安装

    # 2018/7/29 10:17:46测试成功! 一 Tree命令简介 tree是一种递归目录列表命令,产生一个深度缩进列表文件. 二 Tree命令安装 1.下载安装包,地址:http://mama ...

  10. 好用的在线pdf转化器

    https://smallpdf.com/cn/compress-pdf