大盗阿福

总时间限制: 1000ms 内存限制: 65536kB

[描述]

阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。

这条街上一共有 N 家店铺,每家店中都有一些现金。阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。

作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?

输入输入的第一行是一个整数 T (T <= 50) ,表示一共有 T 组数据。
接下来的每组数据,第一行是一个整数 N (1 <= N <= 100, 000) ,表示一共有 N 家店铺。第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。每家店铺中的现金数量均不超过 1000 。输出对于每组数据,输出一行。该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。

[样例输入]

2
3
1 8 2
4
10 7 6 14

[样例输出]

8
24

[提示]

对于第一组样例,阿福选择第 2 家店铺行窃,获得的现金数量为 8 。
对于第二组样例,阿福选择第 1 和 4 家店铺行窃,获得的现金数量为 10 + 14 = 24 。

[Solution]

  转移方程:dp[i]=max(dp[i-2]+data[i],dp[i-1])

 #include <cstdio>
#include <algorithm>
using namespace std;
int T,N;
int data[],dp[];
int main(){
scanf("%d",&T);
for(int i=;i<=T;++i){
scanf("%d",&N); for(int j=;j<=N;++j) scanf("%d",&data[j]);
// dp[1]=data[1]; dp[2]=data[2];
for(int j=;j<=N;++j)
dp[j]=max(dp[j-]+data[j],dp[j-]);
printf("%d\n",dp[N]);
}
return ;
}

[OpenJudge8462][序列DP]大盗阿福的更多相关文章

  1. 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  2. [OpenJudge90][序列DP+乱搞]滑雪

    滑雪 总时间限制: 1000ms 内存限制: 65536kB [描述] Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次 ...

  3. 序列DP(输出有要求)

    DP Time Limit:10000MS     Memory Limit:165888KB     64bit IO Format:%lld & %llu Submit Status De ...

  4. hdoj5909 Tree Cutting(点分治+树上dp转序列dp)

    题目链接:https://vjudge.net/problem/HDU-5909 题意:给一颗树,结点带权值v[i]<m.求异或和为k的子树个数(0<=k<m). 思路: 首先点分治 ...

  5. 一类巧妙利用利用失配树的序列DP

    I.导入 求长度为\(\text{len}\)的包含给定连续子串\(\text{T}\)的 0/1 串的个数.(\(|T|<=15\)) 通常来说这种题目应该立刻联想到状压 DP 与取反集--这 ...

  6. 洛谷P1415 拆分数列[序列DP 状态 打印]

    题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时 ...

  7. UVA - 1625 Color Length[序列DP 代价计算技巧]

    UVA - 1625 Color Length   白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束   和模拟赛那道环形DP很想,计算这 ...

  8. 【BZOJ-1046】上升序列 DP + 贪心

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3723  Solved: 1271[Submit][Stat ...

  9. 2014 Super Training #10 D 花生的序列 --DP

    原题: FZU 2170 http://acm.fzu.edu.cn/problem.php?pid=2170 这题确实是当时没读懂题目,连样例都没想通,所以没做了,所以还是感觉这样散漫的做不好,有些 ...

随机推荐

  1. Win7/8 绿色软件开机启动

    在查找番茄工作法PC端软件时,发现了淡高的文章win8绿色软件开机启动,试用了一下wintabs,的确好用! 另外,office软件中有一款 OFFICE tabs的插件,标签式的管理,非常方便快捷, ...

  2. .NET的PE文件结构篇(转)

    一.开篇 开篇我要讲述一个关于PE文件结构的文章,这篇文章动手能力比较强,希望大家能够动手进行操作,这边文章篇幅有可能会长一些,为了方便大家阅读我可以将其分为几个部分进行讲解,主要分为以下几个部分: ...

  3. NET中IL理解(转)

    .NET CLR 和 Java VM 都是堆叠式虚拟机器(Stack-Based VM),也就是說,它們的指令集(Instruction Set)都是採用堆叠运算的方式:执行时的资料都是先放在堆叠中, ...

  4. 图论:Stoer-Wagner算法

    利用Stoer-Wagner算法求无向图最小割 直接给出算法描述和过程实现: 算法步骤: . 设最小割cut=INF, 任选一个点s到集合A中, 定义W(A, p)为A中的所有点到A外一点p的权总和. ...

  5. SDK登录cognos

    通过SDK登录cognos 一种是拼xml,如这里的实现https://github.com/cosysoft/cognos-tools/blob/master/src/com/ibm/cognos/ ...

  6. AtCoder Regular Contest 082 F

    Problem Statement We have a sandglass consisting of two bulbs, bulb A and bulb B. These bulbs contai ...

  7. spoj p104 Matrix-Tree定理

    这个问题就是经典的生成树记数问题,题目为spoj p104 highway. 首先我们引入Matrix-Tree定理,由kirchhoff证明,定理的概述为,对于图G,我们定义若干个矩阵, D[G], ...

  8. linux驱动基础系列--linux spi驱动框架分析(续)

    前言 这篇文章是对linux驱动基础系列--linux spi驱动框架分析的补充,主要是添加了最新的linux内核里设备树相关内容. spi设备树相关信息 如之前的文章里所述,控制器的device和s ...

  9. Kuangbin 带你飞 KMP扩展KMP Manacher

    首先是几份模版 KMP void kmp_pre(char x[],int m,int fail[]) { int i,j; j = fail[] = -; i = ; while (i < m ...

  10. django一对多、多对多模型、自关联的建立

    # 原创,转载请留言联系 一对多模型 一对多的关系,例如员工跟部门.一个部门有多个员工.那么在django怎么建立这种表关系呢? 其实就是利用外键,在多的一方,字段指定外键即可.例如员工和部门,员工是 ...