因子和&&因子数
给定一数n,求n的因子数目和因子之和

上述求因子和式子等于
∏{(piei+1 - 1) / (pi - 1)} (∏就是连乘)
模板:
const int maxn = +;
int prime[maxn];
bool is_prime[maxn];
int sieve(int n)//返回n以内素数的个数
{
int p = ;
for(int i = ; i <= n; i++)is_prime[i] = ;
is_prime[] = is_prime[] = ;
for(ll i = ; i <= n; i++)
{
if(is_prime[i])
{
prime[p++] = i;
for(ll j = i * i; j <= n; j += i)is_prime[j] = ;//这里涉及i*i,必须使用long long
}
}
return p;
} ll Divisors_num(ll n, int tot)//素数总数
{
ll ans = ;
for(int i = ; i < tot && prime[i] * prime[i] <= n; i++)
{
if(n % prime[i] == )
{
int cnt = ;
while(n % prime[i] == )
{
cnt++;
n /= prime[i];
}
ans *= (cnt + );
}
}
if(n > )ans *= ;
return ans;
}
ll pow(ll a, ll b)
{
ll ans = ;
while(b)
{
if(b & )ans = ans * a;
a *= a;
b /= ;
}
return ans;
}
ll Divisors_sum(ll n, int tot)
{
ll ans = ;
for(int i = ; i < tot && prime[i] * prime[i] <= n; i++)
{
if(n % prime[i] == )
{
int cnt = ;
while(n % prime[i] == )
{
cnt++;
n /= prime[i];
}
ans = (pow(prime[i], cnt + ) - ) / (prime[i] - ) * ans;
}
}
if(n > )ans *= (n + );
return ans;
}
因子和&&因子数的更多相关文章
- hdu6237 分解质因子
题意:给一堆石子,每次移动一颗到另一堆,要求最小次数使得,所有石子数gcd>1 题解:枚举所有质因子,然后找次数最小的那一个,统计次数时,我们可以事先记录下每堆石子余质因子 的和,对所有石子取余 ...
- haligong2016
A 采用递推的方法,由于要到达棋盘上的一个点,只能从左边或者上边过来,根据加法原则,到达某一点的路径数目,就等于到达其相邻的上点和左点的路径数目的总和.所有海盗能达到的点将其路径数置为0即可. #in ...
- hdu-2421 Deciphering Password 数学姿势
给定A,B,对于A^B的每一个因子,M为其因子的因子数的三次方求和. 容易推导得出A^B的每一个因子都是A的质因子的组合(质因子可重复利用),其因子数自然等于所使用的每个质因子的数量乘积. 假设A由质 ...
- 牛客OI赛制测试赛2 A 无序组数
链接:https://www.nowcoder.com/acm/contest/185/A来源:牛客网 题目描述 给出一个二元组(A,B) 求出无序二元组(a,b) 使得(a|A,b|B)的组数 无序 ...
- 2018-2019 ACM-ICPC, Asia Dhaka Regional Contest C.Divisors of the Divisors of An Integer (数论)
题意:求\(n!\)的每个因子的因子数. 题解:我们可以对\(n!\)进行质因数分解,这里可以直接用推论快速求出:https://5ab-juruo.blog.luogu.org/solution-p ...
- 求n的因子个数与其因子数之和
方法一:朴素算法:O(n). #include<bits/stdc++.h> using namespace std; int get_num(int n){ ; ;i<=n;++i ...
- Java数据结构——平衡二叉树的平衡因子(转自牛客网)
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性.首先要找出插入新结点后失去平衡的最小子树根结点的指针.然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树.当失去平衡的最小子树被 ...
- Divisors_组合数因子个数
Description Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- ...
- HDOJ(HDU) 2521 反素数(因子个数~)
Problem Description 反素数就是满足对于任意i(0< i < x),都有g(i) < g(x),(g(x)是x的因子个数),则x为一个反素数.现在给你一个整数区间[ ...
随机推荐
- VS2015打开特定项目就崩溃
今天在打开之前写的项目的时候,一开vs就崩溃关闭了,打开其他项目的.sln和.vsproj就可以,唯独有1个项目打不开,也不知道为啥,气死了. 去网上找到的解决办法: 步骤1:开始–>所有程序– ...
- Nginx + Lua搭建文件上传下载服务
收录待用,修改转载已取得腾讯云授权 最新腾讯云技术公开课直播,提问腾讯W3C代表,如何从小白成为技术专家?点击了解活动详情 作者 | 庄进发 编辑 | 迷鹿 庄进发,信息安全部后台开发工程师,主要负责 ...
- PIXI 下落文字消除(3)
图片示例,简陋的图,记录下落过程, 1.创建应用实例并添加到DOM元素上. (会看到一个黑色画布,没有任何元素,接下来会在画布上创建文字) 2.创建 TextStyle 用来设置要显示字体样式 3. ...
- pyspark SparkSession及dataframe基本操作
from pyspark import SparkContext, SparkConf import os from pyspark.sql.session import SparkSession f ...
- 弹出table页面--hq
function queryRelation(tableID,prosourceID){ //弹出页面 debugger; initqueryRelationGrid(tableID,prosour ...
- 查询指定tomcat应用的进程数
假设应用名称为pear,查询指定tomcat应用pear的进程数: ps -ef |grep "/datong/tomcat-pear/" |grep -v tail | grep ...
- 吴恩达《Machine Learning Yearning》总结(11-20章)
11.何时修改开发集.测试集和度量指标 开展一个新项目,尽快选好开发集和测试集:例子,根据度量指标A分类器排在B分类器前面,但是团队认为B分类器在实际产品上优于A分类器,这时就需要考虑修改开发集和测试 ...
- Google Kickstart在线测试规则以及注意事项
谷歌招聘在如火如荼的进行中,进谷歌都需要经过谷歌kickstart在线测试,然后过了之后还有五轮的面试- -.好吧毕竟你待遇高,你强你有理.. 下面介绍一下进谷歌的第一关google kickstar ...
- css border-radius的用法及自适应的椭圆
我们知道border-radius允许您为元素添加圆角边框! 而border-radius 属性是一个简写属性,用于设置四个 border-*-radius 属性. 如果省略 bottom-left, ...
- SetupFactory7使用经验
1. exe默认产生快捷方式,可以点击去掉. 2. 默认英语,可与选汉语 3. 编码逻辑 安装程序复制完程序文件后,从编辑框中得到数据,并写ini文件 屏幕- ...