Hadoop之MapReduce(二)序列化,排序及分区
MapReduce的序列化
序列化(Serialization)是指把结构化对象转化为字节流。
反序列化(Deserialization)是序列化的逆过程。把字节流转为结构化对象。
当要在进程间传递对象或持久化对象的时候,就需要序列化对象成字节流,反之当要将接收到或从磁盘读取的字节流转换为对象,就要进行反序列化。Java 的序列化(Serializable)是一个重量级序列化框架,一个对象被序列化后,会附带很多额外的信息(各种校验信息,header,继承体系…),不便于在网络中高效传输;所以,hadoop 自己开发了一套序列化机制( Writable),精简,高效。不用像 java 对象类一样传输多层的父子关系,需要哪个属性就传输哪个属性值,大大的减少网络传输的开销。
Writable是Hadoop的序列化格式,hadoop定义了这样一个Writable接口。一个类要支持可序列化只需实现这个接口即可。
public class BeanDemo implements Writable { private long id;
private String desc; //一定要有无参构造,不然反序列化的时候会报错
public BeanDemo() {
} public BeanDemo(long id, String desc) {
this.id = id;
this.desc = desc;
} /**
* 序列化方法
*
* @param out
* @throws IOException
*/
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(id);
out.writeUTF(desc);
} /**
* 反序列化方法
*
* @param in
* @throws IOException
*/
@Override
public void readFields(DataInput in) throws IOException {
this.id = in.readLong();
this.desc = in.readUTF();
}
}
MapReduce的排序
如果我们需要用某个我们自定义的JavaBean中的某个字段进行结果的排序,那么就需要把这个JavaBean放到key中传输,因为在MapReduce的过程中一定会对key进行排序,而且我们可以自己定义排序的方式,一旦我们需要把JavaBean放到key中传输的话,那么这个JavaBean需要实现Comparable接口的compareTo方法:
public class BeanDemo implements Writable, Comparable<BeanDemo> { private long id;
private String desc; //一定要有无参构造,不然反序列化的时候会报错
public BeanDemo() {
} public BeanDemo(long id, String desc) {
this.id = id;
this.desc = desc;
} /**
* 序列化方法
*
* @param out
* @throws IOException
*/
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(id);
out.writeUTF(desc);
} /**
* 反序列化方法
*
* @param in
* @throws IOException
*/
@Override
public void readFields(DataInput in) throws IOException {
this.id = in.readLong();
this.desc = in.readUTF();
} /**
* @param o
* @return
*/
@Override
public int compareTo(BeanDemo o) {
//按照id倒序排
//虽然this.id 比o.id 大 依然返回-1 认为小 由于排序规则谁大谁在后 所以就形成了倒序
return this.id > o.id ? -1 : 1;
}
}
这样得出的结果就以id倒序排序了。
MapReduce的分区
如果有一种需求,需要将结果根据规则分别写到不同的文件中去,那么我们就需要多个reduce来执行,既然需要多个reduce那么就需要多个分区,让每个reduce拉取属于自己分区的数据进行操作和输出
Mapreduce 中会将 map 输出的 kv 对,按照相同 key 分组,然后分发给不同的 reducetask。
默认的分发规则为:根据 key 的 hashcode%reducetask 数来分发;
所以:如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件 Partitioner,自定义一个 CustomPartitioner 继承抽象类:Partitioner,然后在job 对象中,设置自定义 partitioner: job.setPartitionerClass(CustomPartitioner.class)。
案例:以 上一篇的简单案例 为基础,在此基础上实现:a开头的写到一个文件中,b开头的写到一个文件中,其他的写到另外一个文件中
首先编写Partitioner类:
public class WordPartitioner extends Partitioner<Text, IntWritable> { public static HashMap<String, Integer> map = new HashMap<String, Integer>(); static {
map.put("a", 0);
map.put("b", 1);
} @Override
public int getPartition(Text key, IntWritable intWritable, int numPartitions) {
//获取每个词的第一个字母 在 map中对应的数字
Integer code = map.get(key.toString().substring(0, 1));
if (code != null) {
return code;
}
return 2;
}
}
修改执行类,修改reduce个数和添加自定义分区组件:
public class WordCountRunner {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(); //指定mr采用本地模式运行 本地测试用
conf.set("mapreduce.framework.name", "local"); //使用job构建本次mr程序
Job job = Job.getInstance(conf); //指定本次mr程序运行的主类
job.setJarByClass(WordCountRunner.class); //指定本次mr程序的mapper reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class); //指定本次mr程序map阶段的输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); //指定本次mr程序reduce阶段的输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); //设置使用几个Reduce执行 要和下面的WordPartitioner内的分区数相同
job.setNumReduceTasks(3);
//设置自定义分区组件
job.setPartitionerClass(WordPartitioner.class); //指定本次mr程序处理的数据目录 输出结果的目录
// FileInputFormat.setInputPaths(job, new Path("/wordcount/input"));
// FileOutputFormat.setOutputPath(job, new Path("/wordcount/output")); //本地测试用
FileInputFormat.setInputPaths(job, new Path("D:\\wordcount\\input"));
FileOutputFormat.setOutputPath(job, new Path("D:\\wordcount\\output"));//输出的文件夹不能提前创建 否则会报错 //提交本次mr的job
//job.submit(); //提交任务 并且追踪打印job的执行情况
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : -1);
}
}
Hadoop之MapReduce(二)序列化,排序及分区的更多相关文章
- Hadoop学习笔记: MapReduce二次排序
本文给出一个实现MapReduce二次排序的例子 package SortTest; import java.io.DataInput; import java.io.DataOutput; impo ...
- (转)MapReduce二次排序
一.概述 MapReduce框架对处理结果的输出会根据key值进行默认的排序,这个默认排序可以满足一部分需求,但是也是十分有限的.在我们实际的需求当中,往往有要对reduce输出结果进行二次排序的需求 ...
- 详细讲解MapReduce二次排序过程
我在15年处理大数据的时候还都是使用MapReduce, 随着时间的推移, 计算工具的发展, 内存越来越便宜, 计算方式也有了极大的改变. 到现在再做大数据开发的好多同学都是直接使用spark, hi ...
- Hadoop MapReduce 二次排序原理及其应用
关于二次排序主要涉及到这么几个东西: 在0.20.0 以前使用的是 setPartitionerClass setOutputkeyComparatorClass setOutputValueGrou ...
- MapReduce二次排序
默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...
- mapreduce二次排序详解
什么是二次排序 待排序的数据具有多个字段,首先对第一个字段排序,再对第一字段相同的行按照第二字段排序,第二次排序不破坏第一次排序的结果,这个过程就称为二次排序. 如何在mapreduce中实现二次排序 ...
- MapReduce 二次排序
默认情况下,Map 输出的结果会对 Key 进行默认的排序,但是有时候需要对 Key 排序的同时再对 Value 进行排序,这时候就要用到二次排序了.下面让我们来介绍一下什么是二次排序. 二次排序原理 ...
- 关于MapReduce二次排序的一点解答
上一篇博客说明了怎么自定义Key,而且用了二次排序的例子来做测试,但没有详细的说明二次排序,这一篇说详细的说明二次排序,为了说明曾经一个思想的误区,特地做了一个3个字段的二次排序来说明.后面称其为“三 ...
- java mapreduce二次排序
原文链接: https://www.toutiao.com/i6765808056191156748/ 目的: 二次排序就是有下面的数据 a 3 a 1 a 100 c 1 b 2 如果只按照abc排 ...
- Hadoop(18)-MapReduce框架原理-WritableComparable排序和GroupingComparator分组
1.排序概述 2.排序分类 3.WritableComparable案例 这个文件,是大数据-Hadoop生态(12)-Hadoop序列化和源码追踪的输出文件,可以看到,文件根据key,也就是手机号进 ...
随机推荐
- iOS开发之最近开发遇到的问题总结
1.Cannot create __weak reference in file using manual reference counting 解决办法: 点击工程-------->Build ...
- ng $interval(周期性定时器) $timeout(延迟定时器)
<!DOCTYPE html> <html ng-app="myApp"> <head lang="en"> <met ...
- cmd 操作WinService
1.运行--〉cmd:打开cmd命令框 2.在命令行里定位到InstallUtil.exe所在的位置 InstallUtil.exe 默认的安装位置是在C:\Windows\Microsoft.NET ...
- socket编程再分析(-)——基础
linux 网络编程-基础篇 0.Socket简介 socket接口是TCP/IP网络的API,Socket接口定义了许多函数或例程,程序员可以用它们来开发TCP/IP网络上的应用程序.要学Inter ...
- Linux部分常用命令学习(一)
什么是linux命令? 是一个可执行程序,就像我们所看到的位于目录/usr/bin 中的文件一样. 属于这一类的程序,可以编译成二进制文件,诸如用 C 和 C++语言写成的程序, 也可以是由脚本语言写 ...
- 【CSS3】 - 初识CSS3
.navdemo{ width:560px; height: 50px; font:bold 0/50px Arial; text-align:center; margin:40px auto 0; ...
- oracle truncate闪回数据库恢复
1.创建试验表 conn scott/tiger create table truncate_test as select * from user_objects; select count(*) f ...
- ecmall允许上传的图片大小
$uploader->allowed_type($type); $uploader->allowed_size($size); ecmall上传类型大小是这样定义,你可以去文件中搜索相关 ...
- svn服务器端回退版本 (转)
由于误操作,不小心将错误的代码提交到了svn上,于是想在服务器上撤销本次提交,经过尝试,发现进行以下步骤的操作即可彻底删除本次提交: 1.首先找到本次提交后生成的版本号,例如为r224. 2.登录到s ...
- ODBC CRecordSet访问
一.概述 ODBC 是一种使用SQL 的程序设计接口.使用ODBC 让应用程序的编写者避免了与数据源相联的复杂性.这项技术目前已经得到了大多数DBMS 厂商们的广泛支持. Microsoft Deve ...