每个点拆点,分别向源/汇连a[i]的边,满足条件的相互连INF的边,答案为sum-maxflow*2。

因为若有几个点不能同时被选,我们要贪心地选择其中和尽量大的部分,这可以由最小割来保证。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
#define INF 2147483647
#define MAXN 6005
#define MAXM 600301
int v[MAXM],cap[MAXM],en,first[MAXN],next[MAXM];
int d[MAXN],cur[MAXN],A[3005],sumv;
queue<int>q;
int n,S,T;
void Init_Dinic(){memset(first,-1,sizeof(first)); en=0; S=0; T=(n<<1|1);}
void AddEdge(const int &U,const int &V,const int &W)
{v[en]=V; cap[en]=W; next[en]=first[U]; first[U]=en++;
v[en]=U; next[en]=first[V]; first[V]=en++;}
bool bfs()
{
memset(d,-1,sizeof(d)); q.push(S); d[S]=0;
while(!q.empty())
{
int U=q.front(); q.pop();
for(int i=first[U];i!=-1;i=next[i])
if(d[v[i]]==-1 && cap[i])
{
d[v[i]]=d[U]+1;
q.push(v[i]);
}
}
return d[T]!=-1;
}
int dfs(int U,int a)
{
if(U==T || !a) return a;
int Flow=0,f;
for(int &i=cur[U];i!=-1;i=next[i])
if(d[U]+1==d[v[i]] && (f=dfs(v[i],min(a,cap[i]))))
{
cap[i]-=f; cap[i^1]+=f;
Flow+=f; a-=f; if(!a) break;
}
if(!Flow) d[U]=-1;
return Flow;
}
int max_flow()
{
int Flow=0,tmp=0;
while(bfs())
{
memcpy(cur,first,((n<<1)+5)*sizeof(int));
while(tmp=dfs(S,INF)) Flow+=tmp;
}
return Flow;
}
int gcd(int a,int b){return b==0?a:gcd(b,a%b);}
int sqr(const int &x){return x*x;}
bool check(const int &a,const int &b)
{
int t=a*a+b*b;
return (sqr((int)sqrt(t))==t&&(gcd(a,b)==1));
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%d",&A[i]);
sumv+=A[i];
}
Init_Dinic();
for(int i=1;i<=n;++i)
for(int j=1;j<i;++j)
if(check(A[i],A[j]))
AddEdge(i,j+n,INF),
AddEdge(j,i+n,INF);
for(int i=1;i<=n;++i)
AddEdge(S,i,A[i]),
AddEdge(i+n,T,A[i]);
printf("%d\n",sumv-(max_flow()>>1));
return 0;
}

  

【最小割】【Dinic】bzoj3275 Number的更多相关文章

  1. bzoj 3144 [Hnoi2013]切糕【最小割+dinic】

    都说了是'切'糕所以是最小割咯 建图: 每个点向下一层连容量为这个点的val的边,S向第一层连容量为inf的边,最后一层向T连容量为自身val的边,即割断这条边相当于\( f(i,j) \)选择了当前 ...

  2. bzoj 2127 happiness【最小割+dinic】

    参考:https://www.cnblogs.com/chenyushuo/p/5144957.html 不得不说这个建图方法真是非常妙啊 假设S点选理,T点选文,a[i][j]为(i,j)选文收益, ...

  3. bzoj 2132 圈地计划【最小割+dinic】

    对于网格图,尤其是这种要求相邻各自不同的,考虑黑白染色 对于这张染色后图来说: 对于每个黑格: 表示初始时选择商业区: s点向它连商业区收益的流量,它向t点连工业区收益的流量: 割断S侧的边说明反悔, ...

  4. bzoj 3894 文理分科【最小割+dinic】

    谁说这道和2127是双倍经验的来着完全不一样啊? 数组开小会TLE!数组开小会TLE!数组开小会TLE! 首先sum统计所有收益 对于当前点\( (i,j) \)考虑,设\( x=(i-1)*m+j ...

  5. [2019杭电多校第一场][hdu6582]Path(最短路&&最小割)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6582 题意:删掉边使得1到n的最短路改变,删掉边的代价为该边的边权.求最小代价. 比赛时一片浆糊,赛后 ...

  6. 【BZOJ-3275&3158】Number&千钧一发 最小割

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 316[Submit][Status][Discus ...

  7. 【BZOJ3275】Number 最小割

    [BZOJ3275]Number Description 有N个正整数,需要从中选出一些数,使这些数的和最大.若两个数a,b同时满足以下条件,则a,b不能同时被选1:存在正整数C,使a*a+b*b=c ...

  8. POJ 1815 Friendship (Dinic 最小割)

    Friendship Time Limit: 2000MS   Memory Limit: 20000K Total Submissions: 8025   Accepted: 2224 Descri ...

  9. Uvaoj 11248 Frequency Hopping(Dinic求最小割)

    题意:1到n节点(节点之间有一定的容量),需要流过C的流量,问是否可以?如果可以输出possible, 否则如果可以扩大任意一条边的容量 可以达到目的,那么输出possible option:接着输出 ...

随机推荐

  1. vm虚拟机 开启时报错 无法打开内核设备“\\.\Global\vmx86”: 系统找不到指定的文件。

    解决办法 方案一 1/http://jingyan.baidu.com/article/455a9950aaf4aea167277878.html 方案二 2.http://jingyan.baidu ...

  2. CSS3学习之radial-gradient(径向渐变)

    转自:http://www.cnblogs.com/rainman/p/5133685.html 1.语法 径向渐变不同于线性渐变,线性渐变是从“一个方向”向“另一个方向”的颜色渐变,而径向渐变是从“ ...

  3. CSS中z-index全解析

    一.z-index解释 z-index属性决定了一个HTML元素的层叠级别,元素层叠级别是相对于元素在Z轴上(与X轴Y轴相对照)的位置而言.一个更高的z-index值意味着这个元素在叠层顺序中会更靠近 ...

  4. Hibernate中inverse、cascade的说明

    一: 前沿:刚刚学习hibernate时,对于inverse很是纠结,不知道什么时候该用什么时候不该用,在网上找了一些资料,说的也很含糊,我都不知道如果写了"inverse=true&quo ...

  5. 对request.getSession(false)的理解(附程序员常疏忽的一个漏洞)

    本文属于本人原创,转载请注明出处:http://blog.csdn.net/xxd851116/archive/2009/06/25/4296866.aspx [前面的话] 在网上经常看到有人对req ...

  6. tomcat:tomcat的OutOfMemoryError解决

    最近在熟悉一个开发了有几年的项目,需要把数据库从mysql移植到oracle,首先把jdbc的连接指向 mysql,打包放到tomcat里面,可以跑起来,没有问题,可是当把jdbc连接指向oracle ...

  7. python 写 excel 模块 : xlwt

    主要来自:[ python中使用xlrd.xlwt操作excel表格详解 ] 为了方便阅读, 我将原文两个模块拆分为两篇博文: [ python 读 excel 模块: xlrd ] [ python ...

  8. 【洛谷 P3805】 【模板】manacher算法

    题目链接 manacher算法:在线性时间内求一个字符串中所有/最长回文串的算法. 先来考虑一下暴力的算法,枚举每个中点,向两边扩展,时间复杂度\(O(n^2)\). 来分析下此算法的缺点. 1.因为 ...

  9. 转: JAVA_SWT常用事件, 和方法

    转自: http://blog.csdn.net/lyq19870515/article/details/9450275 获取焦点事件: text.addListener(SWT.FocusIn, n ...

  10. Golang使用amqp发送消息

    1.为什么使用信道(channel)而不使用TCP连接发送AMQP命令? 对操作系统来说频繁的建立和销毁TCP连接开销非常昂贵,而操作系统每秒建立的连接是有上限的,性能瓶颈不可避免,而只建立一条TCP ...