题目链接:

https://nanti.jisuanke.com/t/31458

题解:

建立两个树状数组,第一个是,a[1]*n+a[2]*(n-1)....+a[n]*1;第二个是正常的a[1],a[2],a[3]...a[n]

#include "bits/stdc++.h"
using namespace std;
#define ll long long
const int MAXN=1e5+10;
ll sum[MAXN],ans[MAXN];
ll num[MAXN];
ll n,q;
int lowbit(int x)
{
return x&(-x);
}
void update(int i , ll x)
{
ll t=x*(n-i+1);
while(i<=n)
{
sum[i]+=x;
ans[i]+=t;
i+=lowbit(i);
}
}
ll query1(int x)
{
ll Sum=0;
while(x)
{
Sum+=sum[x];
x-=lowbit(x);
}
return Sum;
}
ll query2(int x)
{
ll Sum=0;
while(x)
{
Sum+=ans[x];
x-=lowbit(x);
}
return Sum;
}
int main()
{
while(scanf("%lld%lld",&n,&q)!=EOF)
{ for(int i=1;i<=n;i++)
{
scanf("%lld",&num[i]);
update(i,num[i]);
}
while(q--)
{
int a,b,c;
scanf("%d",&a);
if(a==1)
{
scanf("%d%d",&b,&c);
ll A1=query1(c)-query1(b-1);
ll A2=query2(c)-query2(b-1);
printf("%lld\n",A2-A1*((n-b+1)-(c-b+1)));
} else
{
scanf("%d%d",&b,&c);
ll k=c-num[b];
num[b]=c;
update(b,k);
}
}
}
return 0;
}

  

  • 262144K
 

Morgana is learning computer vision, and he likes cats, too. One day he wants to find the cat movement from a cat video. To do this, he extracts cat features in each frame. A cat feature is a two-dimension vector <xx, yy>. If x_ixi​= x_jxj​ and y_iyi​ = y_jyj​, then <x_ixi​, y_iyi​> <x_jxj​, y_jyj​> are same features.

So if cat features are moving, we can think the cat is moving. If feature <aa, bb> is appeared in continuous frames, it will form features movement. For example, feature <aa , bb > is appeared in frame 2,3,4,7,82,3,4,7,8, then it forms two features movement 2-3-42−3−4 and 7-87−8 .

Now given the features in each frames, the number of features may be different, Morgana wants to find the longest features movement.

Input

First line contains one integer T(1 \le T \le 10)T(1≤T≤10) , giving the test cases.

Then the first line of each cases contains one integer nn (number of frames),

In The next nn lines, each line contains one integer k_iki​ ( the number of features) and 2k_i2ki​ intergers describe k_iki​features in ith frame.(The first two integers describe the first feature, the 33rd and 44th integer describe the second feature, and so on).

In each test case the sum number of features NN will satisfy N \le 100000N≤100000 .

Output

For each cases, output one line with one integers represents the longest length of features movement.

样例输入复制

1
8
2 1 1 2 2
2 1 1 1 4
2 1 1 2 2
2 2 2 1 4
0
0
1 1 1
1 1 1

样例输出复制

3

2018徐州网络赛H. Ryuji doesn't want to study的更多相关文章

  1. 2018icpc徐州网络赛-H Ryuji doesn't want to study(线段树)

    题意: 有n个数的一个数组a,有两个操作: 1 l r:查询区间[l,r]内$a[l]*(r-l+1)+a[l+1]*(r-l)+a[l+2]*(r-l-1)+\cdots+a[r-1]*2+a[r] ...

  2. ACM-ICPC 2018徐州网络赛-H题 Ryuji doesn't want to study

    死于update的一个long long写成int了 真的不想写过程了 ******** 树状数组,一个平的一个斜着的,怎么斜都行 题库链接:https://nanti.jisuanke.com/t/ ...

  3. ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study

    262144K   Ryuji is not a good student, and he doesn't want to study. But there are n books he should ...

  4. ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study (线段树)

    Ryuji is not a good student, and he doesn't want to study. But there are n books he should learn, ea ...

  5. ACM-ICPC 2018 徐州赛区网络预赛 H Ryuji doesn't want to study (树状数组差分)

    https://nanti.jisuanke.com/t/31460 题意 两个操作.1:查询区间[l,r]的和,设长度为L=r-l+1, sum=a[l]*L+a[l+1]*(L-1)+...+a[ ...

  6. ACM-ICPC 2018 徐州赛区网络预赛H Ryuji doesn't want to study(树状数组)题解

    题意:给你数组a,有两个操作 1 l r,计算l到r的答案:a[l]×L+a[l+1]×(L−1)+⋯+a[r−1]×2+a[r] (L is the length of [ l, r ] that ...

  7. ACM-ICPC 2018 徐州赛区网络预赛 H. Ryuji doesn't want to study(树状数组)

    Output For each question, output one line with one integer represent the answer. 样例输入 5 3 1 2 3 4 5 ...

  8. 2018徐州网络赛 - Trace

    题意:n个左下角为原点右上角在第一象限的矩形不断覆盖,求最后形成的图形的周长 x和y是独立的,分别维护两棵线段树,一棵表示x坐标下最大的y值,另一棵表示y坐标下最大的x值 从覆盖的角度来考虑,如果逆序 ...

  9. ACM-ICPC 2018青岛网络赛-H题 Traveling on the Axis

    题目:略(不知道怎么从ZOJ搬题) 地址:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=4054 把这题的每个点分成两种情况 ...

随机推荐

  1. Oracle日志组添加冗余文件和日志组

    rac中需要指定thread添加日志组RAC:alter database add logfile thread 1 group 1('+DATA/irac/redo01_1.log','+DATA/ ...

  2. 【转载】#446 - Deciding Between an Abstract Class and an Interface

    An abstract class is a base class that may have some members not implemented in the base class, but ...

  3. Android(java)学习笔记45:深入分析Java ClassLoader原理

    1. 前言: Android中的动态加载机制能更好的优化我们的应用,同时实现动态的更新,这就便于我们管理我们的应用,通过插件化来减轻我们的内存以及CPU消耗,在不发布新版本的情况下能更新某些模块. 当 ...

  4. 51nod 1442 士兵的旅行

    拆点,因为只能走一步,那么u->v 后就不能到k了,这样,建图就能保证只走一步: #include <bits/stdc++.h> using namespace std; *; c ...

  5. memset赋初值的运用

    int ”较“的原则:加法不爆. 极大值:0x7f 较大值:0x3f 较小值:0xc0 极小值:0x80 long long ”较“的原则:加法不爆. 极大值:0x7f 较大值:0x3f 较小值:0x ...

  6. POJ 3635 Full Tank? 【分层图/最短路dp】

    任意门:http://poj.org/problem?id=3635 Full Tank? Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  7. Golang Failpoint 的设计与实现

    小结: 1. https://mp.weixin.qq.com/s/veIoupLjM4l5SUVC6h_Gkw Golang Failpoint 的设计与实现 原创: 龙恒 PingCAP 今天  

  8. Django ORM之QuerySet方法大全

    ################################################################## # PUBLIC METHODS THAT ALTER ATTRI ...

  9. 【luogu P3379 最近公共祖先】 模板

    题目链接:https://www.luogu.org/problemnew/show/P3379 倍增求lca,先存下板子,留个坑以后再填讲解. in 5 5 43 12 45 11 42 43 23 ...

  10. 一个JS对话框,可以显示其它页面,

    还不能自适应大小 garyBox.js // JavaScript Document// gary 2014-3-27// 加了 px 在google浏览器没加这个发现设置width 和height没 ...