题意

题目链接

\(T\)组数据,给出\(n\)个点的度数,问是否可以构造出一个简单图

Sol

Havel–Hakimi定理:

  • 给定一串有限多个非负整数组成的序列,是否存在一个简单图使得其度数列恰为这个序列。

令\(S=(d_1,d_2,\dots,d_n)\)为有限多个非负整数组成的非递增序列。 S可简单图化当且仅当有穷序列\(S’=(d_2-1,d_3-1,...,d(d_1+1)-1,d(d_1+2),...,d_n)\)只含有非负整数且是可简单图化的。

最后判断一下是否都是零就好了

感觉这个算法。。就是个贪心吧。。

当然判断这类问题的可行性还有另外一种方法:Erdős–Gallai定理

令\(S=(d_1,d_2,...,d_n)\)为有限多个非负整数组成的非递增序列。\(S\)可简单图化当且仅当这些数字的和为偶数,并且

\(\sum_{i = 1}^k d_i \leqslant k(k - 1) + \sum_{i = k + 1}^n min(d_i, k)\)

对所有\(1 \leqslant k \leqslant n\)都成立

不过这个好像没办法输出方案??。。。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
using namespace std;
const int MAXN = 1e5 + 10, INF = 1e9 + 7;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int T, N, reach[101][101], sum = 0;
Pair a[MAXN];
void init() {
memset(reach, 0, sizeof(reach));
sum = 0;
}
int main() {
// freopen("a.in", "r", stdin);
T = read();
while(T--) {
init();
N = read();
for(int i = 1; i <= N; i++) a[i] = MP(read(), i), sum += a[i].fi;
if(sum % 2 != 0) {puts("NO\n"); continue;}
bool f = 0;
for(int i = 1; i <= N; i++) {
sort(a + i, a + N + 1, greater<Pair>());
if(a[i].fi <= 0) continue;
for(int j = i + 1; j <= i + a[i].fi; j++) a[j].fi -= 1, reach[a[i].se][a[j].se] = 1, reach[a[j].se][a[i].se] = 1;
a[i].fi = 0;
} for(int i = 1; i <= N; i++) if(a[i].fi != 0) {puts("NO\n"); f = 1; break;}
if(f) continue;
puts("YES");
for(int i = 1; i <= N; i++, puts(""))
for(int j = 1; j <= N; j++)
printf("%d ", reach[i][j]);
puts(""); }
}
/*
1
6
4 3 1 4 2 0
*/

POJ1659 Frogs' Neighborhood(Havel–Hakimi定理)的更多相关文章

  1. POJ1659 Frogs' Neighborhood(青蛙的邻居) Havel-Hakimi定理

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 8729   Accepted: 36 ...

  2. POJ 1659 Frogs' Neighborhood (Havel--Hakimi定理)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10545   Accepted: 4 ...

  3. poj1659 Frogs' Neighborhood

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10239   Accepted: 4 ...

  4. POJ1659 Frogs' Neighborhood(Havel定理)

    给一个无向图的度序列判定是否可图化,并求方案: 可图化的判定:d1+d2+……dn=0(mod 2).关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环. 可简单图化的判定(Have ...

  5. POJ 1659 Frogs' Neighborhood (Havel定理构造图)

    题意:根据图的度数列构造图 分析:该题可根据Havel定理来构造图.Havel定理对可图化的判定: 把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d ...

  6. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  7. POJ 1659 Frogs' Neighborhood(Havel-Hakimi定理)

    题目链接: 传送门 Frogs' Neighborhood Time Limit: 5000MS     Memory Limit: 10000K Description 未名湖附近共有N个大小湖泊L ...

  8. poj 1659 Frogs' Neighborhood (贪心 + 判断度数序列是否可图)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 6076   Accepted: 26 ...

  9. poj 1659 Frogs' Neighborhood( 青蛙的邻居)

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9639   Accepted: 40 ...

随机推荐

  1. 常用跨平台IDE如何添加main函数的参数并正确执行

    1. Eclipse-cdt如何添加main函数参数: 打开eclipse,新建工程.新建源文件,此处以C语言为例,写入代码如下: #include <stdio.h> //int arg ...

  2. CentOS7.3托管磁盘虚拟机扩容数据磁盘

    随着托管磁盘的上线,虚拟机支持的单块磁盘容量从1TB到达了4TB,客户对单块磁盘容量的需求量也会变的很大. 操作之前需要重点查看: 由于扩容磁盘的操作非同小可,一旦哪一步出现问题,就会导致分区损坏,数 ...

  3. winform跨线程问题(有参数和无参数)

    1.invoke是同步线程 using System; using System.Collections.Generic; using System.ComponentModel; using Sys ...

  4. 构建docker镜像

    一.通过docker commit命令构建镜像 docker commit 构建镜像可以想象为是将运行的镜像进行重命名另存一份.我们先创建一个容器,并在容器里做出修改,就像修改代码一样,最后再将修改提 ...

  5. 洛谷 P3381【模板】最小费用最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表 ...

  6. FPGA基础学习(5) -- 时序约束(实践篇)

    目录 1. 理论回顾 2. 时间裕量 3. 最大延迟和最小延迟 4. 案例分析 参考文献: 距离上一篇有关时序的理论篇已经有一段时间了(可以参考博文FPGA时序约束--理论篇),实际上此段时间,甚至到 ...

  7. BZOJ3065 带插入区间K小值 || 洛谷P4278

    这是一道让我崩溃的题...... 然鹅洛谷上时限被改然后只有20分......好像所有人都被卡了(雾) 由于替罪羊树不是依靠旋转操作而是依靠暴力重构的方式维护树的平衡,所以我们可以考虑使用替罪羊树套区 ...

  8. 04-树5 Root of AVL Tree (25 分)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub ...

  9. Q686 重复叠加字符串匹配

    给定两个字符串 A 和 B, 寻找重复叠加字符串A的最小次数,使得字符串B成为叠加后的字符串A的子串,如果不存在则返回 -1. 举个例子,A = "abcd",B = " ...

  10. Python实现图片验证码识别

    转载地址:https://blog.csdn.net/EB_NUM/article/details/77060009 具体想要实现上面的代码需要安装两个包和一个引擎 在安装之前需要先安装好Python ...