题目描述

在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习。现在有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b)。一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少?

输入输出格式

输入格式:

第一行有两个整数N,M用空格隔开。(1<=N<=300,1<=M<=300)

接下来的N行,第I+1行包含两个整数ki和si, ki表示第I门课的直接先修课,si表示第I门课的学分。若ki=0表示没有直接先修课(1<=ki<=N, 1<=si<=20)。

输出格式:

只有一行,选M门课程的最大得分。

输入输出样例

输入样例#1:
复制

7  4
2 2
0 1
0 4
2 1
7 1
7 6
2 2
输出样例#1: 复制

13
树形dp;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m;
vector<int>vc[maxn];
int dp[400][400];
void dfs(int rt) {
for (int i = 0; i < vc[rt].size(); i++) {
int v = vc[rt][i];
dfs(v);
for (int j = m + 1; j >= 0; j--) {
for (int k = 0; k < j; k++) {
dp[rt][j] = max(dp[rt][j], dp[rt][j - k] + dp[v][k]);
}
}
}
} int main()
{
// ios::sync_with_stdio(0);
n = rd(); m = rd();
for (int i = 1; i <= n; i++) {
int x = rd(); dp[i][1] = rd();
vc[x].push_back(i);
}
dfs(0);
cout << dp[0][m + 1] << endl;
return 0;
}

选课 树形背包dp的更多相关文章

  1. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  2. 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp

    题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...

  3. 【bzoj1495】[NOI2006]网络收费 暴力+树形背包dp

    题目描述 给出一个有 $2^n$ 个叶子节点的完全二叉树.每个叶子节点可以选择黑白两种颜色. 对于每个非叶子节点左子树中的叶子节点 $i$ 和右子树中的叶子节点 $j$ :如果 $i$ 和 $j$ 的 ...

  4. 【bzoj4987】Tree 树形背包dp

    题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...

  5. 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...

  6. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  7. [POJ1155]TELE(树形背包dp)

    看到这道题的第一眼我把题目看成了TLE 哦那不是重点 这道题是树形背包dp的经典例题 题目描述(大概的): 给你一棵树,每条边有一个cost,每个叶节点有一个earn 要求在earn的和大于等于cos ...

  8. HDU1561 The more ,The better (树形背包Dp)

    ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物.但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先 ...

  9. HDU-4044 树形背包dp好题

    不会做,题解是参考网上的.感觉这道题是到好题,使得我对树形背包dp更了解了. 有几个注意的点,直接给出代码,题解以及注意点都在注释里了. #include<bits/stdc++.h> u ...

随机推荐

  1. accept巨坑

    在做node.js时, 我们要把一个资源发送回前端,需要用到以下一句: res.setHeader('Content-Type', mime ); mime,全称即Multipurpose Inter ...

  2. mac配置git mergetool为p4merge(2013笔记整理)

    既有环境: 1)下载安装p4merge 2)安装git 下面是配置p4merge为git mergetool的步骤 1. /usr/local/bin下创建extMerge文件: $ cat > ...

  3. ParallaxEffect

    [ParallaxEffect] ParallaxEffect是一种用简单的2D贴图来模拟3D效果的简易方法.譬如一棵树,摄像机俯视时,当树远离摄像机时,树顶偏远,当树靠近,树顶偏近.苹果官方Adve ...

  4. solr java api 使用solrj操作zookeeper集群中的solrCloud中的数据

    1 导入相关的pom依赖 <dependencies> <dependency> <groupId>org.apache.solr</groupId> ...

  5. CSS 伪类与伪元素

    CSS的元素选择器除了根据id(#).class(.).属性([ ])选取元素以外,还有很重要的一类,就是根据元素的特殊状态来选取元素.它们就是伪类和伪元素.跟id选择器.类选择器.属性选择器以及派生 ...

  6. php格式化时间戳显示友好的时间

    在项目中时间一律显示为2014-10-20 10:22显得很呆板.在微博.QQ空间等网站通常会显示为几秒前,几分钟前,几小时前等容易阅读的时间,我们称之为友好的时间格式.那么用php怎么实现呢? 大体 ...

  7. 9. Palindrome Number 回文数的判断

    [抄题]: Determine whether an integer is a palindrome. An integer is a palindrome when it reads the sam ...

  8. while 循环和do while循环

    while循环是先检测条件符合不符合,符合才执行循环体内容,不符合就跳过while循环. 就和一个房间有两个门,一个前门,一个后门,while循环是当你进入前门的时候有人会检查你的身份,只有身份符合条 ...

  9. Luogu 4951 [USACO 2001 OPEN]地震

    水个博客玩. $01$分数规划. 题目要求$\frac{F - \sum_{i = 1}^{n}C_i}{T_i}$最大,设$\frac{F - \sum_{i}C_i}{T_i} \geq e$,移 ...

  10. jquery遮罩层

    (function () { //遮罩层实现 zhe zhao ceng kexb 2016.2.24 $.extend($.fn, { mask: function (msg, maskDivCla ...