BZOJ4197 / UOJ129 [Noi2015]寿司晚宴
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。
Input
输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。
Output
输出一行包含 1 个整数,表示所求的方案模 p 的结果。
Sample Input
Sample Output
HINT
2≤n≤500
正解:状压DP+质因数分解
解题报告:
这道题的思想很巧妙QAQ
考虑直接算难以考虑,那么我们从题目给定的规则中可以发现其实,选择了一个数就相当于把这个数的质因子集合选了,因为为了确保第二个人选的和第一个人互质,就不能再选这个质因子。
考虑一个数最多有一个大于根号$500$的质因子,且可以特殊考虑,而小于等于根号$500$的质因子只有$8$个,所以我们可以使用状压$DP$来统计方案。
因为小于等于根号$500$的质因子可以通过状压判掉,但是大于根号$500$的部分我们必须想办法解决冲突和重复计算的问题。考虑将所有数包含的质因子集合,和大于根号$500$的质因子(如果没有就是$1$)预处理出来,按大于根号$500$的质因子排序,那么这个质因子相等的区间我们一起处理。
显然这相等的一整个区间,必须是只放入第一个人或者只放入第二个人或者都不放入,那么就可以DP了:
$f[s1][s2]$表示全局第一个人选择的集合为$s1$,第二个人选择的集合为$s2$时的方案数,接着把$f$的值赋给$g$,
$g[0、1][s1][s2]$表示第一个人选择的集合为$s1$,第二个人选择的集合为$s2$,同时当前这个大于根号$500$的质因子放入第一个人/第二个人的方案数。
做一遍$DP$,最后统计完整个相等的区间时,就赋值回$f$:$f[s1][s2]=g[0][s1][s2]+g[1][s1][s2]-f[s1][s2]$,表示的是两种情况相加,但是因为这个质因子两个都不放的情况算了两次,所以需要减掉一次。
注意$f$、$g$之间相互转换的时间和条件。
ps:不含大质因子的时候可以每次都统计一遍答案,因为已经可以用状态来防止非法情况了,无需特别考虑。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
typedef long long LL;
const int MAXS = 257;
const int MAXN = 520;
const int end = 256;
int n,prime[12]={2,3,5,7,11,13,17,19};
LL p,f[MAXS][MAXS],g[2][MAXS][MAXS],ans;
//f[s1][s2]表示当前第一个人选的集合为s1,第二个人选的集合为s2的方案数
//g[0][s1][s2],表示对于当前大于根号500质因子相同的一个区间而言的,这个质因子分配给第一个人(或者不分配)的方案数;
//g[1][s1][s2]表示对于第二个人而言的 struct Number{
int S;//包含质因子的状态
int prime;//大于根号500的质因子,没有则是1
}a[MAXN]; inline bool cmp(Number q,Number qq){ return q.prime<qq.prime; } inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void work(){
n=getint(); scanf("%lld",&p); int x;
for(int i=2;i<=n;i++) {
x=i;
for(int j=0;j<8;j++) {
if(x%prime[j]>0) continue;
a[i].S|=(1<<j);
while(x%prime[j]==0) x/=prime[j];
}
a[i].prime=x;
}
sort(a+2,a+n+1,cmp);
f[0][0]=1;
for(int i=2;i<=n;i++) {
if(i==2 || a[i].prime!=a[i-1].prime || a[i].prime==1) {
memcpy(g[0],f,sizeof(f));
memcpy(g[1],f,sizeof(f));
} for(int j=end-1;j>=0;j--)
for(int k=end-1;k>=0;k--) {
if((j&k)>0) continue;//不合法
if((a[i].S&k)==0) //不与第二个人冲突,则可以选入第一个人
g[0][ a[i].S | j ][k]+=g[0][j][k],g[0][ a[i].S | j ][k]%=p;
if((a[i].S&j)==0)
g[1][j][ a[i].S | k ]+=g[1][j][k],g[1][j][ a[i].S | k ]%=p;
} if(i==n || a[i].prime==1 || a[i].prime!=a[i+1].prime) {
for(int j=end-1;j>=0;j--)
for(int k=end-1;k>=0;k--) {
if((j&k)>0) continue;
/*!!!*/
f[j][k]=g[0][j][k]+g[1][j][k]-f[j][k];//去掉重复计算没有选当前这个质因子的情况
}
}
}
for(int i=end-1;i>=0;i--)
for(int j=end-1;j>=0;j--)
if((i&j)==0)
ans+=f[i][j],ans%=p;
ans+=p; ans%=p;
printf("%lld",ans);
} int main()
{
work();
return 0;
}
BZOJ4197 / UOJ129 [Noi2015]寿司晚宴的更多相关文章
- 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...
- 【bzoj4197】[Noi2015]寿司晚宴 分解质因数+状态压缩dp
题目描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 ...
- UOJ129 NOI2015 寿司晚宴 数论、状压DP
传送门 数论题\(n \leq 500\)肯定是什么暴力算法-- 注意到每一个数\(> \sqrt{n}\)的因子最多只有一个,这意味着\(> \sqrt{n}\)的因子之间是独立的,而只 ...
- [UOJ#129][BZOJ4197][Noi2015]寿司晚宴
[UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...
- [BZOJ4197][Noi2015]寿司晚宴
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 412 Solved: 279[Submit][Status] ...
- BZOJ 4197: [Noi2015]寿司晚宴( dp )
N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...
- BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划
BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被 ...
- [NOI2015]寿司晚宴 --- 状压DP
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...
- BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...
随机推荐
- bloom filter + murmurhash
是一种hash方法,其实核心思想就是,将一个字符串通过多个普通hash函数映射到hash表上,然后再进行检索的时候同样计算hash函数,如果全都都hash表上出现过,那么说明有极大的可能出现过,如果没 ...
- 【BZOJ2213】[Poi2011]Difference DP
[BZOJ2213][Poi2011]Difference Description A word consisting of lower-case letters of the English alp ...
- 《从零开始学Swift》学习笔记(Day 8)——小小常量、变量大作用
原创文章,欢迎转载.转载请注明:关东升的博客 计算机语言学习中都有常量和变量,他们几乎是我编写代码的灵魂了,离开他们我真的是“活不了” 常量是标识符的前面加上关键字let.常量其值在使用过程中不会 ...
- 爬虫入门【8】Python连接MongoDB的用法简介
MongoDB的连接和数据存取 MongoDB是一种跨平台,面向文档的NoSQL数据库,提供高性能,高可用性并且易于扩展. 包含数据库,集合,文档等几个重要概念. 我们在这里不介绍MongoDB的特点 ...
- 1020 逆序排列(DP)
1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序 ...
- JQuery UI 入门
1. JQuery UI 概述 1.1 JQuery UI 主要分为三部分: 交互部件(interactions):是一些与鼠标交互相关的内容; 小部件(widgets): 主要是一些页面的扩展; 效 ...
- 印象笔记ipad端快捷键
- 001-Java®语言规范、Java平台标准版文档、JVM概述
一.概述 相关api地址:JDK10 JDK 9 JDK 8 JDK 7 JDK 6 Java语言和虚拟机规范: https://docs.oracle.com/javase/spec ...
- 002-unity3d插件使用
一.导入第三方的工具包(.unitypackage文件) 1.NGUI项 NGUI是一款收费的插件,在Asset Store中大家可以看到价格.在未购买正版的前提下我们可以通过两种方法来使用NGUI, ...
- 20170520 BADI增强学习
一.要求:Tcode:FF_5 导入数据运行时,产生财务凭证之前修改某些字段值.Exmp:FEBRE-VWEZWBKPF-XBLNRFEBEP-CHECTBSEG-ZUONR there is a b ...