GTY's birthday gift
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1286 Accepted Submission(s): 502
Problem Description
FFZ's
birthday is coming. GTY wants to give a gift to ZZF. He asked his gay
friends what he should give to ZZF. One of them said, 'Nothing is more
interesting than a number multiset.' So GTY decided to make a multiset
for ZZF. Multiset can contain elements with same values. Because GTY
wants to finish the gift as soon as possible, he will use JURUO magic.
It allows him to choose two numbers a and b(a,b∈S), and add a+b
to the multiset. GTY can use the magic for k times, and he wants the
sum of the multiset is maximum, because the larger the sum is, the
happier FFZ will be. You need to help him calculate the maximum sum of
the multiset.
Input
Multi test cases (about 3) . The first line contains two integers n and k (2≤n≤100000,1≤k≤1000000000). The second line contains n elements ai (1≤ai≤100000)separated by spaces , indicating the multiset S .
Output
For each case , print the maximum sum of the multiset (mod 10000007).
Sample Input
Sample Output
Source
题意:给出一个集合s,集合中的有个初始元素集合,现在的规则是从这些元素中选出两个最大的分别为 a,b,将 a+b 重新添加进集合,然后依次操作 k 次,问最终的元素集合的和。
例如 : 3 6 2 --> 9 6 3 2 --> 15 9 6 3 2 操作两次之后结果为 35
题解:从题目中我们可以知道每次选出的两个数构成了斐波拉契数列,得到递推式 f[i] = f[i-1]+f[i-2],然后我们可以看出第i步求出的和为 sum[i] = sum[i-1]+f[i+1] = sum[i]+f[i]+f[i-1] 我们要求的最终结果是sum[k] 所以我们可以构造矩阵来做.
构造矩阵的方法如下(图丑死了。。。别怪我):
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArUAAAE6CAIAAACHzD2GAAAWVklEQVR4nO3dUULiWBAFUNblglyPq2EzLsb50LFDYjCFhFxenfM13dMNuVSR3AbR0wcAwKXT0QcAAMTRDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0AAJjTDwCAOf0A4Amc/nf0gdCFVQNId7p09OHQgj2DnzkXk6NzP+iQOjNj1tFAiM6nYwK1XcgOwWMzBh1KvsD5sZPYZyw9tV3IDsFjM+57KIGBbxY7QvZg3ERpu5Adgsdm3PFQYjPfZrA4XGfcRGm7kB2Cx2bUD7YaLA7XGTdR2i5kh+CxGfWDrQaLw3XGTZS2C9kheGxG/WCrweJwnXETpe1Cdggem1E/2GqwOFxn3ERpu5Adgsdm1A+2GiwO1xk3UdouZIfgsRn1g60Gi8N1xk2UtgvZIXhsRv1gq8HicJ1xE6XtQnYIHptRP9hqsDhcZ9xEabuQHYLHZtQPthosDtcZN1HaLmSH4LEZ9YOtBovDdcZNlLYL2SF4bEb9YKvB4nCdcROl7UJ2CB6bUT/YarA4XGfcRGm7kIHBz6+n08vb+/1uMDDjJ/1gq8HicJ1xE6XtQkYEP79+3f3r+ePj/e1lUz94f3s5vZ4vfnk6nX76qxEZf6IfbDVYHK4zbqK0XciI4OfX2gsG311g0g++/4d+8PERnPk2g8XhOuO+i7u/EttW24WMCF7pB98V4PyqH1y56dTMtxksDtcZ913oB/fSdiErwb/fBvi+Ls8XcPrrz+v39z/1P3//3y+n1/bLfrBxq/WDqzedmvk2g8XhOuO+C/3gXtou5ObgF7t2fvv8r9/6wfev5u8InF+nDUE/uP9Np2a+zWBxuM6470I/uJe2C7k1+Pvby/Jy/Gs/mF31JzdwWTf0g7vfdEbme52hQuLwGH8e9+R1yuVZq42vZ58H42f/Xg//9RzV9vyzOfj/S3bxSP7+/sLaH724kq/2g+lmz0eoH1y96aMyr3wW5crHS7aIHSF7+OO4399e/9+yrZ+GGtLXc/HFg7Fwfr04F72/vV0tTm3PP7Xg87P83v3gGv3g6k0f2A9Wh/fzeLaIHSF7uOe4fzpPNDF7zfZj7WXgdsoPQ9vzzy3B/63d/HHWD0r0g61iR8ge/j7uyWvH82tkHz+cSX1JwsctLant+Wdr8MlLdtMdu2ioF1+RqB/87sB+cMhnUfQDNvnbuD93e7rX+sGV3+pHP9hse/CVr+a4uEp4/aDkqH5w1GdR9AM2+dO4lzvXuR9cZlcPPj4+bngY2p5/IoJXv3/iKv3g+6avZD7ssyj6AZv8uR/8v51fXbZzP7js7m0fi0ufezE9hV1/WNqefyKC6wf3v+lrmQ/5LMr8D94vDqP547gv3ghr//7C2ccbfzT9EpXfHpe255+I4BefibuRn890edO/Zj7gsyj6AZsYN1HaLmSH4LEZAz6/8NDPougHbGLcRGm7kB2Cx2Y87OsPDvosin7AJsZNlLYL2SF4bMbDXj846LMo+gGbGDdR2i5kh+CxGQPeX7g73x+JPzNuorRdyA7BYzPqB1vFjpA9GDdR2i5kh+CxGQftB58uP4vi5zOxnXETpe1Cdggem3HEfrCPweJwnXETpe1Cdggem1E/2GqwOFxn3ERpu5Adgsdm1A+2GiwO1xk3UdouZIfgsRn1g60Gi8N1xk2UtgvZIXhsRv1gq8HicJ1xE6XtQnYIHptRPygYLxFrzJoobReyQ/DYjPpBwXiJWGPWRGm7kB2Cx2bUDwrGS8QasyZK24XsEDw2o35QMF4i1pg1UdouZIfgsRn1g4LxErHGrInSdiE7BI/NqB8UjJeINWZNlLYL2SF4bEb9oGC8RKwxa6K0XcgOwWMz6gcF4yVijVkTpe1Cdggem1E/KBgvEWvMmihtF7JD8NiM+kHBeIlYY9ZEabuQHYLHZtQPCsZLxBqzJkrbhewQPDajflAwXiLWmDVR2i5kh+CxGfWDgvESscasidJ2ITsEj82oHxSMl4g1Zk2UtgvZIXhsRv2gYLxErDFrorRdyA7BYzPqBwXjJWKNWROl7UJ2CB6bUT8oGC8Ra8yaKG0XskPw2Iz6QcF4iVhj1kRpu5Adgsdm1A8KxkvEGrMmStuF7BA8NqN+UDBeItaYNVHaLmST4Jkx9YOC8RKxxqyJ0nYhmwTPjKkfFIyXiDVmTZS2C9kkeGZM/aBgvESsMWuitF3IJsEzY+oHBeMlYo1ZE6XtQjYJnhlTPygYLxFrzJoobReySfDMmPpBwXiJWGPWRGm7kE2CZ8bUDwrGS8QasyZK24VsEjwzpn5QMF4i1pg1UdouZJPgmTH1g4LxErHGrInSdiGbBM+MqR8UjJeINWZNlLYL2SR4Zkz9oGC8RKwxa6K0XcgmwTNj6gcF4yVijVkTpe1CNgmeGVM/KBgvEWvMmihtF7JJ8MyY+kHBeIlYY9ZEabuQTYJnxtQPCsZLxBqzJkrbhWwSPDOmflAwXiLWmDVR2i5kk+CZMfWDgvESscasidJ2IZsEz4ypHxSMl4g1Zk2UtgvZJHhmTP2gYLxErDFrorRdyCbBM2PqBwXjJWKNWROl7UI2CZ4ZUz8oGC8Ra8yaKG0XsknwzJj6QUFsotOzOfoB+93THTBja7uQm4K/v72cTqfT6eXtffZ/zq8//W6ezPnqBwWZicoX5wxHP2y/eK6jZXhtF3JD8MsOcH79+qOv56/i8PL2/q9ChLaFzPnqBwWZiQrX5CRHP2y/eK6jZXhtF/L34O9vL9OL/vl1vQLM/miQzPnqBwWZiW65OAc4+mH7xXMdLcNru5C/B5+9haAf3I9+UBCb6Jbr86GOfsB+93QHzNjaLuT14N9vJpxOp6+WcNkPLsuDflCjHxSMl4g1Zk2Utgv5e/Crrx/oB3+hHxSMl4g1Zk2U2IXc+5D0gwPpBwXjJWKNWRMlcyEfcFT6wYH0g4LxErHGrImSuZD6wb2EznfHm44M/BfjJWKNWRMlcCFPCw+4lx/+hH6wG/2gYLxErDFrouy9kDfc8mOeI/rBgfSDgvESscasibLrQt524/rBHWWecPSDgvESscasiZLWD04L9z2k24/N90e6H/2gYLxErDHrP1n/eTnc5pH9YMvtP+wJoh8cKGmu8cZLxBqz/oNn+Zl5z2TvhSxVhBv6xL0O7Pe/cPHzmf7x85lukDTXeOMlYo1Z3y73H2lPLLkf3P1gjrqvA2XG1A8KxkvEGrO+nZcPdvCAhdxYEUpN4u5Htet9HSgzZkY/WH+3MupUkzlC9nDLrL9fwfxxlXv44eflNDd5RF7ezm8v89e9N3rMyWfLvTz4NNjkrJsZM6EfXHaAi3eP3t9ebjnJvL+9TJ+E93rnKXOE7KE864stvnFvBxFV6g/1eeb5PhV9nduepx8s7+jXP7D3Ie19d0fJjBnQD2bvVl776tMNvrvA/El4hzdFM0fIHoqznjXS3u/B6wdflg/Ee/jrB7/e0ePPgU3OupkxA/rB1e9uUfJ9Tj6/6gf8SW3W03cWJm66EDw//eDTD2Xg+frB7L70g51kxjy4H/zwbuW17341/XvXnmT6AX9Um/Xtp/0R6QefnrMfLO/r++7Wfv+RB/OAezxEZsz01w/0Aw5RnLVL4oQH48vygTi/nsbpB7sew9rBPOZOHy8zpn5QkDlC9lCd9ewr0T7e317avp6gH/zv/Hr64Wuv4/vB8u5+tPcx/Hgkj7nTx8uM+VT9YPO7vPoBf3TDrC/Ws/P1UT+YmL6F+np+jvcXfrzHo85+Tc66mTGfqh9c/B2vH7Ajs2YH+sFfD+Nh9/tgmTH1g4LMEbIHs+b+/vB1rIcs5OHlYHkMj7zrR8qMqR8UZI6QPZg1f/f+9jI7md18DtIPxn4mZsZ80n7wC/2APzJr7uLiI9x/+JLVoxZSP3iMzJgB/WDmj98/cdX4/eDHZ/JTOPqR+0H+EdLKgQt57HOhyTMxM6Z+UJA5wk8br8Sxjn785sIPj26OWsjDn61NnomZMSP7waf7fXy8w89nWrvuPoujH7+58MOjm6MW8vBna5NnYmbMvH4QLDnRrxfgcEc/fnPhh0c3hyxkwhO2yTMxM6Z+UBCe6MqTOdzRj9wP8o+QVg5ZyISnbZNnYmZM/aBgvESsMWuiPH4hr5cD/eC+MmPqBwXjJWKNWRPl8H6w/J2jDmNImTH1g4LxErHGrIkScmEOOYzxZMbUD2qGDMWSQRPlwQt5Wrj++488mAfc4+NlZtQPaoYMxZJBk+PxV+Urdxd1MMPIzKgf1AwZiiWDJsex12P94AEyM+oHNUOGYsmgyZF2PX5wRejwZMzMqB/UDBmKJYMmx4EX47W70w/uKzOjflAzZCiWDJocgRfjjTXikYf01DIzGmrNkKFYMmhyBPaDRx5VhydjZkZDrRkyFEsGTY6jrsSlfrDfgXV4MmZm1A9qhgzFkkGT46h+UP3zOx1bhydjZsagVXsKQ4ZiyaDJ8ZhtvOFirx/cS2ZG/aBmyFAsGTQ5DukHt/2tPQ6vw5MxM6N+UDNkKJYMmhzJ/eABh9fhyZiZUT+oGTIUSwZNjodt4213oR/8XWZG/aBmyFAsGTQ58rdx12PLj/93mRn1g5ohQ7Fk0ORovo0d4mdm1A9qhgzFkkGTo/k2doifmVE/qBkyFEsGTY7m29ghfmZG/aBmyFAsGTQ5mm9jh/iZGfWDmiFDsWTQ5Gi+jR3iZ2bUD2qGDMWSQZOj+TZ2iJ+ZUT+oGTIUSwZNjubb2CF+Zkb9oGbIUCwZNDmab2OH+JkZ9YOaIUOxZNDkaL6NHeJnZtQPaoYMxZJBk6P5NnaIn5lRP6gZMhRLBk2O5tvYIX5mRv2gZshQLBk0OZpvY4f4mRn1g5ohQ7Fk0ORovo0d4mdm1A9qhgzFkkGTo/k2doifmVE/qBkyFEsGTY7m29ghfmZG/aBmyFAsGTQ5mm9jh/iZGfWDmiFDsWTQ5Gi+jR3iZ2bUD2qGDMWSQZOj+TZ2iJ+ZUT+oGTIUSwZNjubb2CF+Zkb9oGbIUCwZNDmab2OH+JkZ9YOaIUOxZNDkaL6NHeJnZtQPaoYMxZJBk6P5NnaIn5lRP6gZMhRLBk2O5tvYIX5mRv2gZshQLBk0OZpvY4f4mRn1g5ohQ7Fk0ORovo0d4mdm1A9qhgzFkkGTo/k2doifmVE/qBkyFEsGTY7m29ghfmZG/aBmyFAsGTQ5mm9jh/iZGfWDmiFDsWTQ5Gi+jR3iZ2bUD2qGDMWSQZOj+TZ2iJ+ZUT+oGTIUSwZNjubb2CF+Zkb9oGbIUCwZNDmab2OH+JkZ9YOaIUOxZNDkaL6NHeJnZtQPaoYMxZJBk6P5NnaIn5lRP6gZMhRLBk2O5tvYIX5mRv2gZshQLBk0OZpvY4f4mRn1g5ohQ7Fk0ORovo0d4mdm1A9qhgzFkkGTo/k2doifmVE/qBkyFEsGTY7m29ghfmZG/aBmyFAsGTQ5mm9jIf7728vpdDqdXt7eZ//n/PrT78bIHLF+UDNkKJYMmhzNt3Fz/MsOcH79+guv56/isKEfvL+9nF7PF79cKRz3lTli/aBmyFAsGTQ5mm/j1vjvby/T6/j5tXZV/+4Ck37w0+3uInPE+kHNkKFYMmhyNN/GrfFnbyFU+sF3BTi/6gf/6Ac1Q4ZiyaDJ0Xwbt8T/fjPhdDqdvi/1l21hy0VeP5jSD2qGDMWSQZOj+TZujX/19QP94Ab6Qc2QoVgyaHI038YO/eAjcsr6Qc2QoVgyaHI038Z794PvL0Q8LSuDfjAV0A+e6hOrgSNkD6VB/3ROaSrwOZtq6yfuPtqfdu7dD67RD6YO7webPrH6sA+h/ipwhOxBP7hJ4ZrXnn6wlX5wlKP7QeETqw8a0nWBI2QP+gE5mp929IOjHN0PCp9Y1Q94HP2AHM1PO/rBUY7sB8VPrOoHPM4N/WDyVU99y4KvP9hu+2PV/LRzY/zq909cpR/scdNb0hYan37A45T7wb9VPb+e+l4j9YPt9ION9IOj6Ac1gSNkD+V+MFnN97eXti8h6Afb6Qcb3d4PPv3hufjIL40PnLJ+UBM4QvZQ7gfzn/mmH/AL/WCjJvEDY+oHNYEjZA/6wW30g+30g42axA+MqR/UBI6QPegHt9EPttMPNmoSPzCmflATOEL2oB/cRj/YTj/YqEn8wJj6QU3gCNmDfnAb/WA7/WCjJvEDYx7dD2Z8fyQyGDR72/5ttZpvY5P4gTH1g5rAEbIHg2ZnhRNa821sEj8wZl4/+HRZq/18Jh7MoNlX5Z2Y5tvYJH5gzLB+EG/IUCwZNDv5/tfO9i9Rab6NTeIHxtQPaoYMxZJBk6P5NjaJHxhTPygbNRdTpkyO5tvYJH5gTP2gbNRcTJkyOZpvY5P4gTH1g7JRczFlyuRovo1N4gfG1A/KRs3FlCmTo/k2NokfGFM/KBs1F1OmTI7m29gkfmBM/aBs1FxMmTI5mm9jk/iBMfWDslFzMWXK5Gi+jU3iB8bUD8pGzcWUKZOj+TY2iR8YUz8oGzUXU6ZMjubb2CR+YEz9oGzUXEyZMjmab2OT+IEx9YOyUXMxZcrkaL6NTeIHxtQPykbNxZQpk6P5NjaJHxhTPygbNRdTpkyO5tvYJH5gTP2gbNRcTJkyOZpvY5P4gTH1g7JRczFlyuRovo1N4gfG1A/KRs3FlCmTo/k2NokfGFM/KBs1F1OmTI7m29gkfmBM/aBs1FxMmTI5mm9jk/iBMfWDslFzMWXK5Gi+jU3iB8bUD8pGzcWUKZOj+TY2iR8YUz8oGzUXU6ZMjubb2CR+YEz9oGzUXEyZMjmab2OT+IEx9YOyUXMxZcrkaL6NTeIHxtQPykbNxZQpk6P5NjaJHxhTPygbNRdTpkyO5tvYJH5gTP2gbNRcTJkyOZpvY5P4gTH1g7JRczFlyuRovo1N4gfG1A/KRs3FlCmTo/k2NokfGFM/KBs1F1OmTI7m29gkfmBM/aBs1FxMmTI5mm9jk/iBMfWDslFzMWXK5Gi+jU3iB8bUD8pGzcWUKZOj+TY2iR8YUz8oGzUXU6ZMjubb2CR+YEz9oGzUXEyZMjmab2OT+IEx9YOyUXMxZcrkaL6NTeIHxtQPykbNxZQpk6P5NjaJHxhTPygbNRdTpkyO5tvYJH5gzH0PIirqvQROkbszZXI038Ym8QNjRhzEcwmcIndnyuRovo1N4gfGjDiI5xI4Re7OlMnRfBubxA+MGXEQTydqhOwh8LlKW823sUn8wJgRBwGBop6odBZ45XikPvHTMqYcBwA/6nOBXNM5+4E83ADR9AMOYdUAoukHHMKqAUTTDziEVQOIph9wCKsGkE454PFsGwAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP6AQAwpx8AAHP/AaXLIEuEtu3/AAAAAElFTkSuQmCC" alt="" width="516" height="233" />
解出 a - j 即可。
(sum[i],f[i+1],f[i]) = ((1,1,1),(0,1,1),(0,1,0))*(sum[i-1],f[i],f[i-1])
所以此递推式的特征矩阵为 M = ((1,1,1),(0,1,1),(0,1,0))
然后求出 A = M^k
最终结果为 A[0][0]*sum[1]+A[0][1]*f[2]+A[0][2]*f[1]
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const LL mod = ;
const int N = ;
struct Matrix
{
LL v[][];
Matrix(){memset(v,,sizeof(v));}
}ori;
LL n,k,a[N];
Matrix mult(Matrix a,Matrix b){
Matrix temp;
for(int i=;i<;i++){
for(int j=;j<;j++){
for(int k=;k<;k++){
temp.v[i][j] = (temp.v[i][j]+(a.v[i][k]*b.v[k][j])%mod)%mod;
}
}
}
return temp;
}
Matrix pow_mod(Matrix a,LL n){
Matrix ans;
for(int i=;i<;i++){
ans.v[i][i] = ;
}
while(n){
if(n&) ans = mult(ans,a);
a = mult(a,a);
n>>=;
}
return ans;
}
int main()
{
ori.v[][]=,ori.v[][]=,ori.v[][]=;
ori.v[][]=,ori.v[][]=,ori.v[][]=;
ori.v[][]=,ori.v[][]=,ori.v[][]=;
while(scanf("%lld%lld",&n,&k)!=EOF)
{
LL max1=-,max2=-,sum=;
for(int i=; i<=n; i++)
{
scanf("%lld",&a[i]);
if(a[i]>max1){
max2 = max1;
max1 = a[i];
}else if(a[i]>max2&&a[i]<=max1){
max2 = a[i];
}
sum+=a[i];
}
// printf("%lld %lld %lld\n",sum,max1,max2);
Matrix A = pow_mod(ori,k);
LL ans = (A.v[][]*sum%mod+A.v[][]*max1%mod+A.v[][]*max2%mod)%mod;
printf("%lld\n",ans);
}
return ;
}
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- HDU2604:Queuing(矩阵快速幂+递推)
传送门 题意 长为len的字符串只由'f','m'构成,有2^len种情况,问在其中不包含'fmf','fff'的字符串有多少个,此处将队列换成字符串 分析 矩阵快速幂写的比较崩,手生了,多练! 用f ...
- hdu 2842(矩阵高速幂+递推)
题意:一个中国环的游戏,规则是一个木棒上有n个环.第一个环是能够任意放上或拆下的,剩下的环x假设想放上或拆下必须前一个环x-1是放上的且前x-2个环所有是拆下的,问n个环最少多少次操作能够所有拆掉. ...
- POJ3233:Matrix Power Series(矩阵快速幂+递推式)
传送门 题意 给出n,m,k,求 \[\sum_{i=1}^kA^i\] A是矩阵 分析 我们首先会想到等比公式,然后得到这样一个式子: \[\frac{A^{k+1}-E}{A-E}\] 发现要用矩 ...
- HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识
求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...
- HDU 1757 矩阵快速幂加速递推
题意: 已知: 当x<10时:f(x)=x 否则:f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + --+ a9 * f(x-10); 求:f(x ...
- HDU 4686 矩阵快速幂 Arc of Dream
由式子的性质发现都是线性的,考虑构造矩阵,先有式子,a[i] = ax * a[i-1] + ay; b[i] = bx*b[i-1] +by; a[i]*b[i] = ax*bx*a[i-1]*b[ ...
- hdu 5015 矩阵快速幂(可用作模板)
转载:http://blog.csdn.net/wdcjdtc/article/details/39318847 之前各种犯傻 推了好久这个东西.. 后来灵关一闪 就搞定了.. 矩阵的题目,就是构造 ...
- HDU 2855 (矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...
随机推荐
- PM所该学习的
最近第二阶段实在大家都是大一大二,面临的考试很多也很难,很多时候就开始松懈了下来.可是做事情就是需要效率和时间,慢慢地,也开始懈怠了下来. 作为pm,首先自己必须比组员先了解云笔记的各种进程,做好沟 ...
- # ML学习小笔记—Gradien Descent
关于本课程的相关资料http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html 根据前面所为,当我们得到Loss方程的时候,我们希望求得最优的Loss方 ...
- 修改虚拟机上Linux系统的IP地址
然后再输入:ifconfig eth0 192.168.11.6 netmask 255.255.255.0 . 这样就可以把网卡eth0的IP地址修改为 192.168.11.6
- group by 分组后 返回的是一个同属性的集合
group by 分组后 返回的是一个同属性的集合 我们可以遍历该集合
- 不使用库函数、自己编写的(strlen、strcpy、strcmp、strcat、memcmp、memcpy、memmove)
不使用库函数.自己编写的(strlen.strcpy.strcmp.strcat.memcmp.memcpy.memmove) //求字符串长度的函数 int my_strlen(const char ...
- mii-tool与ethtool的用法详解
mii-tool与ethtool的用法详解 1.mii-tool 配置网络设备协商方式的工具: 感谢原文作者!原文地址:http://blog.chinaunix.net/uid-20639775-i ...
- 【C++ 拾遗】Function-like Macros
Macro expansion is done by the C preprocessor at the beginning of compilation. The C preprocessor is ...
- 【题解】NOIP2016换教室
哇好开心啊!写的时候真的全然对于这个加法没有把握,但还是大着胆子试着写了一下——竟然过了样例?于是又调了一下就过啦. 不过想想也觉得是正确的吧,互相独立的事件对于期望的影响自然也是相互独立的,可以把所 ...
- Windows查看进程CMD命令和终止进程CMD命令
将小米路由器3刷机成openwrt的方法,请参考上篇文章< 家庭宽带多运营商接入方案>这里介绍怎么在已经刷成openwrt系统的小米路由器3上安装私有云nextcloud openwrt开 ...
- BZOJ1607 [Usaco2008 Dec]Patting Heads 轻拍牛头 【筛法】
题目 今天是贝茜的生日,为了庆祝自己的生日,贝茜邀你来玩一个游戏. 贝茜让N(1≤N≤100000)头奶牛坐成一个圈.除了1号与N号奶牛外,i号奶牛与i-l号和i+l号奶牛相邻.N号奶牛与1号奶牛相邻 ...