题意翻译

nnn 个数, qqq 次操作

操作0 x y把 AxA_xAx​ 修改为 yyy

操作1 l r询问区间 [l,r][l, r][l,r] 的最大子段和

题目描述

You are given a sequence A of N (N <= 50000) integers between -10000 and 10000. On this sequence you have to apply M (M <= 50000) operations:
modify the i-th element in the sequence or for given x y print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.

输入输出格式

输入格式:

The first line of input contains an integer N. The following line contains N integers, representing the sequence A1..AN.
The third line contains an integer M. The next M lines contain the operations in following form:
0 x y: modify Ax into y (|y|<=10000).
1 x y: print max{Ai + Ai+1 + .. + Aj | x<=i<=j<=y }.

输出格式:

For each query, print an integer as the problem required.

思路:

这道题与GSS1很像(没做过GSS1的点这里

但这个题怎么办呢?

大家应该记得,我做GSS1时,并没有建树这个步骤

而是直接将原始节点都变为-inf,然后通过单点修改的方式建树

那么GSS3就很简单了

我们不需要动修改函数(因为都是单点)

直接在循环中引用即可(我才不会告诉你我是先写的GSS3)

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define rii register int i
#define rij register int j
#define inf 1073741824
#define rs 65536
using namespace std;
struct nod{
int lm,rm,maxn,sum;
}x[];
int n,q,cz,x1,y1;
void add(int wz,int l,int r,int val,int bh)
{
if(l==r&&l==wz)
{
x[bh].maxn=val;
x[bh].lm=val;
x[bh].rm=val;
x[bh].sum=val;
return;
}
int ltt=(l+r)/;
if(wz<=ltt)
{
add(wz,l,ltt,val,bh*);
}
else
{
add(wz,ltt+,r,val,bh*+);
}
x[bh].sum=x[bh*].sum+x[bh*+].sum;
x[bh].lm=max(x[bh*].lm,x[bh*].sum+x[bh*+].lm);
x[bh].rm=max(x[bh*+].rm,x[bh*+].sum+x[bh*].rm);
x[bh].maxn=max(x[bh*].maxn,max(x[bh*+].maxn,x[bh*].rm+x[bh*+].lm));
}
nod query(int l,int r,int nl,int nr,int bh)
{
nod an,bn;
if(l<nl)
{
l=nl;
}
if(r>nr)
{
r=nr;
}
if(nl==l&&nr==r)
{
an=x[bh];
return an;
}
int ltt=(nl+nr)/;
if(l<=ltt&&r<=ltt)
{
return an=query(l,r,nl,ltt,bh*);
}
if(r>ltt&&l>ltt)
{
return bn=query(l,r,ltt+,nr,bh*+);
}
else
{
an=query(l,r,nl,ltt,bh*);
bn=query(l,r,ltt+,nr,bh*+);
an.maxn=max(an.maxn,max(bn.maxn,an.rm+bn.lm));
an.lm=max(an.lm,an.sum+bn.lm);
an.rm=max(bn.rm,bn.sum+an.rm);
an.sum=an.sum+bn.sum;
return an;
} }
int main()
{
// freopen("brs.in","r",stdin);
// freopen("brs.out","w",stdout);
for(rii=;i<=;i++)
{
x[i].lm=-inf;
x[i].rm=-inf;
x[i].maxn=-inf;
}
scanf("%d",&n);
for(rii=;i<=n;i++)
{
int ltt;
scanf("%d",&ltt);
add(i,,rs,ltt,);
}
scanf("%d",&q);
for(rii=;i<=q;i++)
{
scanf("%d%d%d",&cz,&x1,&y1);
if(cz==)
{
nod ans=query(x1,y1,,rs,);
printf("%d\n",ans.maxn);
}
else
{
add(x1,,rs,y1,);
}
}
}

SP1716 GSS3 - Can you answer these queries III(单点修改,区间最大子段和)的更多相关文章

  1. 线段树 SP1716 GSS3 - Can you answer these queries III

    SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...

  2. SP1716 GSS3 - Can you answer these queries III 线段树

    问题描述 [LG-SP1716](https://www.luogu.org/problem/SP1716] 题解 GSS 系列的第三题,在第一题的基础上带单点修改. 第一题题解传送门 在第一题的基础 ...

  3. SP1716 GSS3 - Can you answer these queries III - 动态dp,线段树

    GSS3 Description 动态维护最大子段和,支持单点修改. Solution 设 \(f[i]\) 表示以 \(i\) 为结尾的最大子段和, \(g[i]\) 表示 \(1 \sim i\) ...

  4. SP1716 GSS3 - Can you answer these queries III

    题面 题解 相信大家写过的传统做法像这样:(这段代码蒯自Karry5307的题解) struct SegmentTree{ ll l,r,prefix,suffix,sum,maxn; }; //.. ...

  5. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  6. 数据结构(线段树):SPOJ GSS3 - Can you answer these queries III

    GSS3 - Can you answer these queries III You are given a sequence A of N (N <= 50000) integers bet ...

  7. 【SP1716】GSS3 - Can you answer these queries III(动态DP)

    题目链接 之前用线段树写了一遍,现在用\(ddp\)再写一遍. #include <cstdio> #define lc (now << 1) #define rc (now ...

  8. 题解 SP1716 【GSS3 - Can you answer these queries III】

    \[ Preface \] 没有 Preface. \[ Description \] 维护一个长度为 \(n\) 的数列 \(A\) ,需要支持以下操作: 0 x y 将 \(A_x\) 改为 \( ...

  9. 题解【SP1716】GSS3 - Can you answer these queries III

    题目描述 You are given a sequence \(A\) of \(N (N <= 50000)\) integers between \(-10000\) and \(10000 ...

随机推荐

  1. Base class for cloning an object in C#

    Base class for cloning an object in C# /// <summary> /// BaseObject class is an abstract class ...

  2. POI Excel解析

    Maven 引入POI <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi&l ...

  3. hdu 1255 矩形覆盖面积(面积交)

    http://www.cnblogs.com/scau20110726/archive/2013/04/14/3020998.html 面积交和面积并基本上差不多.在面积并里,len[]记录的是覆盖一 ...

  4. html-框架标签的使用

    <frameset> - rows:按照行进行划分 ** <frameset rows="80,*"> - cols:按照列进行划分 ** <fram ...

  5. 转:ITopologicalOperator Buffer调用异常的解决方法(来源网络)

      /// <summary>   /// 用拓扑分析求出缓冲区范围.   /// 由于ArcGIS的问题,有时调用会出异常,因此需要循环调用   /// </summary> ...

  6. 1.appium介绍

    appium介绍 官方网站 1.特点 appium 是一个自动化测试开源工具,支持 iOS 平台和 Android 平台上的原生应用,web应用和混合应用. “移动原生应用”是指那些用iOS或者 An ...

  7. Struts2的学习-通配符和session对象

    一. 取得session 3种方法1.context.getSession() -->>Map对象 2.HttpServletRequest request =(HttpServletRe ...

  8. vue.js--基础 数据的双向绑定

    所谓双向绑定:就是改变modle,就会改变view,改变view,也会改变modle 下面案例,点击getMthod(),获取msg的内容,在点击setMthod()改变msg的内容,你会发现H1的值 ...

  9. Android(java)学习笔记53:局部内部类

    1. 局部内部类 /* 局部内部类 A:可以直接访问外部类的成员 B:在局部位置,可以创建内部类对象,通过对象调用内部类方法,来使用局部内部类功能 面试题: 局部内部类访问局部变量的注意事项? A:局 ...

  10. nbu集群Alwayson相关问题

    Alwayson 1. Alwayson 是否依赖于域环境? 答: 是, alwayson依赖于故障转移群集(只有在故障转移群集中的SQL Server 才能启动高可行性组功能),而故障转移群集愈依赖 ...