Description

"Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks' head, he told them a story.

"Prince Remmarguts lives in his kingdom UDF – United Delta of Freedom. One day their neighboring country sent them Princess Uyuw on a diplomatic mission."

"Erenow, the princess sent Remmarguts a letter, informing him that she would come to the hall and hold commercial talks with UDF if and only if the prince go and meet her via the K-th shortest path. (in fact, Uyuw does not want to come at all)"

Being interested in the trade development and such a lovely girl, Prince Remmarguts really became enamored. He needs you - the prime minister's help!

DETAILS: UDF's capital consists of N stations. The hall is numbered S, while the station numbered T denotes prince' current place. M muddy directed sideways connect some of the stations. Remmarguts' path to welcome the princess might include the same station twice or more than twice, even it is the station with number S or T. Different paths with same length will be considered disparate.

Input

The first line contains two integer numbers N and M (1 <= N <= 1000, 0 <= M <= 100000). Stations are numbered from 1 to N. Each of the following M lines contains three integer numbers A, B and T (1 <= A, B <= N, 1 <= T <= 100). It shows that there is a directed sideway from A-th station to B-th station with time T.

The last line consists of three integer numbers S, T and K (1 <= S, T <= N, 1 <= K <= 1000).

Output

A single line consisting of a single integer number: the length (time required) to welcome Princess Uyuw using the K-th shortest path. If K-th shortest path does not exist, you should output "-1" (without quotes) instead.

Sample Input

2 2
1 2 5
2 1 4
1 2 2

Sample Output

14
 
Solution:
  K短路的板子题,直接spfa+A*。
  简单讲下A*的思路,就是在优先队列广搜的基础上,对于当前状态有一个估价函数,每次选择估价函数和当前实际值之和最优的去扩展。
  对于本题,我们先spfa预处理出源点到各点的最短距离。再反向进行A*(反向是因为处理出的最短距离$dis[i]$表示的是源点到$i$的最短路,要用$dis$作为估价函数,就必须使源点变为终点),设$f(x)$表示估价函数,$g(x)$表示$t$到$x$的实际距离,那么显然$f(x)=g(x)+dis[x]$,最后广搜出前$k$小的值就好了。
  注意,设$h(x)$表示实际的代价,$h'(x)$表示估计的代价,则必须满足$h(x)\geq h'(x)$(这很显然,大于就会切掉正确的方案)。
  然后本题坑点是$s$可能等于$t$,但又必须往外走一遍回来,所以当$s==t$时记得$k++$。
 
代码:
#include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
#include<vector>
#include<cstdio>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)>(b)?(b):(a))
using namespace std;
const int N=,inf=;
int s,t,n,m,k,w[N],W[N],dis[N],ans[N],tot;
int to[N],net[N],h[N],cnt1,To[N],Net[N],H[N],cnt2;
struct node{
int f,g,id;
bool operator<(const node a)const{return f>a.f;}
};
bool vis[N];
priority_queue<node>Q; il int gi(){
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=(a<<)+(a<<)+x-,x=getchar();
return f?-a:a;
} il void add(int u,int v,int c){
to[++cnt1]=v,net[cnt1]=h[u],h[u]=cnt1,w[cnt1]=c;
To[++cnt2]=u,Net[cnt2]=H[v],H[v]=cnt2,W[cnt2]=c;
} il void spfa(){
queue<int>q;
For(i,,n) dis[i]=inf;
dis[s]=,vis[s]=,q.push(s);
while(!q.empty()){
int u=q.front();vis[u]=;q.pop();
for(int i=h[u];i;i=net[i])
if(dis[to[i]]>dis[u]+w[i]){
dis[to[i]]=dis[u]+w[i];
if(!vis[to[i]])q.push(to[i]),vis[to[i]]=;
}
}
} il void Astar(){
if(dis[t]==inf) return;
node tmp;
tmp.g=,tmp.f=dis[t],tmp.id=t;
Q.push(tmp);
while(!Q.empty()){
tmp=Q.top();Q.pop();
if(tmp.id==s) {ans[++tot]=tmp.g;if(tot>=k)return;}
for(int i=H[tmp.id];i;i=Net[i]){
node tp;
tp.g=tmp.g+W[i];
tp.f=tp.g+dis[To[i]];
tp.id=To[i];
Q.push(tp);
}
}
} int main(){
while(scanf("%d%d",&n,&m)==){
memset(h,,sizeof(h));cnt1=;
memset(H,,sizeof(H));cnt2=;
int u,v,c;
For(i,,m) u=gi(),v=gi(),c=gi(),add(u,v,c);
s=gi(),t=gi(),k=gi();
if(s==t)k++;
spfa();
Astar();
if(tot<k)cout<<-;
else cout<<ans[k];
}
return ;
}

POJ——2449 Remmarguts' Date的更多相关文章

  1. poj 2449 Remmarguts' Date(第K短路问题 Dijkstra+A*)

    http://poj.org/problem?id=2449 Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  2. poj 2449 Remmarguts' Date (k短路模板)

    Remmarguts' Date http://poj.org/problem?id=2449 Time Limit: 4000MS   Memory Limit: 65536K Total Subm ...

  3. 图论(A*算法,K短路) :POJ 2449 Remmarguts' Date

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 25216   Accepted: 6882 ...

  4. poj 2449 Remmarguts' Date 第k短路 (最短路变形)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 33606   Accepted: 9116 ...

  5. POJ 2449 Remmarguts' Date (第k短路径)

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions:35025   Accepted: 9467 ...

  6. poj 2449 Remmarguts' Date K短路+A*

    题目链接:http://poj.org/problem?id=2449 "Good man never makes girls wait or breaks an appointment!& ...

  7. POJ 2449 - Remmarguts' Date - [第k短路模板题][优先队列BFS]

    题目链接:http://poj.org/problem?id=2449 Time Limit: 4000MS Memory Limit: 65536K Description "Good m ...

  8. poj 2449 Remmarguts' Date(K短路,A*算法)

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/u013081425/article/details/26729375 http://poj.org/ ...

  9. POJ 2449 Remmarguts' Date

    Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 30725   Accepted: 8389 Description &quo ...

  10. K短路模板POJ 2449 Remmarguts' Date

      Time Limit: 4000MS   Memory Limit: 65536K Total Submissions:32863   Accepted: 8953 Description &qu ...

随机推荐

  1. jQuery(三)HTML

    获得内容: text() - 设置或返回所选元素的文本内容 html() - 设置或返回所选元素的内容(包括 HTML 标记) val() - 设置或返回表单字段的值 <html> < ...

  2. PHP实现SMTP邮件的发送实例

    当你还在纠结php内置的mail()函数不能发送邮件时,那么你现在很幸运,此时的这篇文章可以帮助到你! php利用smtp类来发邮件真是屡试不爽,我用过很久了,基本上没出过问题.本博客后台,当博主回复 ...

  3. 利用phpspreadsheet切割excel大文件

    背景: 利用phpspreadsheet可以轻松的解析excel文件,但是phpspreadsheet的内存消耗也是比较大的,我试过解析将近5M的纯文字excel内存使用量就会超过php默认的最大内存 ...

  4. nodeJs 对 Mysql 数据库的 curd

    var mysql = require('mysql'); var connection = mysql.createConnection({ host : 'localhost', user : ' ...

  5. scala成长之路(4)compaion object——伴生对象的使用

    虽然java一直声称自己是完全面向对象的语言,但一直以来都被很多人所质疑,其中java的静态成员函数就是主要的“罪魁祸首”.由于java中保留了静态方法的调用,导致其编程模式依然有过程式编程的可能,尤 ...

  6. 来自一个大三开学三周的huster的迷茫与失措

    大三开学考研保研的话题开始多了起来.自从前天去听了一回谢长生教授的实验室宣讲会,回来直到现在都好像心头上压了些东西,喘不过气来.本来我就少与外界接触,加之我自己一个人主动学习的积极性也很是缺乏,所以当 ...

  7. fastDFS 上传 java源码

    要想搭建fastDFS网上有相近的文章: 分布式文件系统 - FastDFS 在 CentOS 下配置安装部署 分布式文件系统 - FastDFS 配置 Nginx 模块及上传测试 首先下载fastd ...

  8. P2419 [USACO08JAN]牛大赛Cow Contest

    P2419 [USACO08JAN]牛大赛Cow Contest 题目背景 [Usaco2008 Jan] 题目描述 N (1 ≤ N ≤ 100) cows, conveniently number ...

  9. Dubbo原理及配置

    技术交流群:233513714 Dubbo的背景 随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进 ...

  10. Delphi实例之绘制正弦函数图像

    Delphi实例之绘制正弦函数图像 unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphic ...