汉诺塔II

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4529    Accepted Submission(s): 2231

Problem Description
经典的汉诺塔问题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。也有人相信婆罗门至今仍在一刻不停地搬动着圆盘。恩,当然这个传说并不可信,如今汉诺塔更多的是作为一个玩具存在。Gardon就收到了一个汉诺塔玩具作为生日礼物。 
  Gardon是个怕麻烦的人(恩,就是爱偷懒的人),很显然将64个圆盘逐一搬动直到所有的盘子都到达第三个柱子上很困难,所以Gardon决定作个小弊,他又找来了一根一模一样的柱子,通过这个柱子来更快的把所有的盘子移到第三个柱子上。下面的问题就是:当Gardon在一次游戏中使用了N个盘子时,他需要多少次移动才能把他们都移到第三个柱子上?很显然,在没有第四个柱子时,问题的解是2^N-1,但现在有了这个柱子的帮助,又该是多少呢?
 
Input
包含多组数据,每个数据一行,是盘子的数目N(1<=N<=64)。
 
Output
对于每组数据,输出一个数,到达目标需要的最少的移动数。
 
Sample Input
1
3
12
 
Sample Output
1
5
81
 
Author
Gardon
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  1996 1995 2077 2184 2511 
 

这题想了挺久的,后来才知道要用DP的思想去推。

dp思想:

对于每一个n,可以由i个四根柱子的解加上n-i个三个柱子的解。要把n个盘中的i个移到另一根柱子,需要ans[i]步,再移到目标柱子也需要ans[i]步;而剩下的n-i个盘

要从三根柱子中移到其中的目标柱子要2^(n-i)-1步。故对于每一个n,枚举i=(0,n-1)的情况,最小值为最优解。

注意当n==64时有溢出,稍稍处理一下即可。

代码:

 //0MS    272K    613 B    C++
#include<stdio.h>
#include<math.h>
__int64 ans[]={,,,};
__int64 Min(__int64 a,__int64 b)
{
return a<b?a:b;
}
void init()
{
for(int i=;i<;i++){
ans[i]=(__int64)pow(2.0,1.0*i)-;
//printf("**%I64d\n",ans[i]);
for(int j=;j<i;j++){
if(i== && j==) continue; //防止溢出得不到结果
__int64 temp=*ans[j];
temp+=(__int64)pow(2.0,1.0*(i-j))-;
ans[i]=Min(temp,ans[i]);
}
}
}
int main(void)
{
int n;
init();
while(scanf("%d",&n)!=EOF)
{
printf("%I64d\n",ans[n]);
}
return ;
}

hdu 1207 汉诺塔II (DP+递推)的更多相关文章

  1. HDU 1207 汉诺塔II (递推)

    经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小顺序摞着64片黄金圆盘.上 ...

  2. HDU 1207 汉诺塔II (找规律,递推)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1207 汉诺塔II Time Limit: 2000/1000 MS (Java/Others)     ...

  3. HDU 2064 汉诺塔III (递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2064 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到 ...

  4. HDU 2077 汉诺塔IV (递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2077 还记得汉诺塔III吗?他的规则是这样的:不允许直接从最左(右)边移到最右(左)边(每次移动一定是 ...

  5. HDU 1207 汉诺塔II (简单DP)

    题意:中文题. 析:在没有第四个柱子时,把 n 个盘子搬到第 3 个柱子时,那么2 ^ n -1次,由于多了一根,不知道搬到第四个柱子多少根时是最优的, 所以 dp[i] 表示搬到第4个柱子 i 个盘 ...

  6. HDU 2175 汉诺塔IX (递推)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2175 1,2,...,n表示n个盘子.数字大盘子就大.n个盘子放在第1根柱子上.大盘不能放在小盘上.  ...

  7. 题解报告:hdu1995汉诺塔V(递推dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1995 Problem Description 用1,2,...,n表示n个盘子,称为1号盘,2号盘,. ...

  8. ACM_汉诺塔问题(递推dp)

    Problem Description: 最近小G迷上了汉诺塔,他发现n个盘子的汉诺塔问题的最少移动次数是2^n-1,即在移动过程中会产生2^n个系列.由于发生错移产生的系列就增加了,这种错误是放错了 ...

  9. 【BZOJ 1019】【SHOI2008】汉诺塔(待定系数法递推)

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 559  Solved: 341[Submit][Status] ...

随机推荐

  1. pyqt5通过qt designer 设计方式连接多个UI图形界面

    当我们通过pyqt开发时,eric6为我们提供了一个方便的工具:图形化的绘制UI工具--qtdesigner.我们可以通过它开发多个UI,然后利用信号-槽工具,将功能代码附着在上面.也可以将多个界面连 ...

  2. 洛谷 P3952

    题目描述 小明正在学习一种新的编程语言 A++,刚学会循环语句的他激动地写了好多程序并 给出了他自己算出的时间复杂度,可他的编程老师实在不想一个一个检查小明的程序, 于是你的机会来啦!下面请你编写程序 ...

  3. Arduino平台基于DbC的软件调试

    基于LED和串口通信的DBC调试工具:HAssert --- Hyper LED/Serial Assert . 本文基于DbC思想 ,在Arduino平台上实现了两种断言显示方式---LED显示和串 ...

  4. 码云配置webhooks自动触发拉取代码

    webhooks的使用 码云和github的钩子叫webhooks 每次您 push 代码后,都会给远程 HTTP URL 发送一个 POST 请求 码云项目管理页面的webhooks设置: http ...

  5. 华为机试 求int型数据在内存中存储时1的个数

    题目描述 输入一个int型的正整数,计算出该int型数据在内存中存储时1的个数. 输入描述: 输入一个整数(int类型) 输出描述: 这个数转换成2进制后,输出1的个数 输入 5 输出 2 普通运算方 ...

  6. Matplotlib 基本图表的绘制

    图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主 同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsize=None, use_index=T ...

  7. (数据科学学习手札20)主成分分析原理推导&Python自编函数实现

    主成分分析(principal component analysis,简称PCA)是一种经典且简单的机器学习算法,其主要目的是用较少的变量去解释原来资料中的大部分变异,期望能将现有的众多相关性很高的变 ...

  8. R语言绘图:在地图上绘制散点图

    使用ggplot2在地图上绘制散点图 ######*****绘制散点图代码*****####### options(baidumap.key = '**************') #设置密钥 bei ...

  9. java 堆栈内存分析详解

    计算机术语里面堆和栈代表不同的存储结构:stack-栈:heap-堆 所以java虚拟机(JVM)中堆和栈是两种内存 堆.栈对比 对比点 堆 栈 JVM中的功能 内存数据区 内存指令区 动静态 运行时 ...

  10. PHP.44-TP框架商城应用实例-后台19-权限管理-RBAC需求分析

    RBAC:Role Based Access Control:基于角色的访问控制 需求分析:[类似效果如下图] 1.权限,角色,管理员 2.权限管理[无限级] 注意:权限会被分配给角色,而不是给管理员 ...