nyoj299——如何优雅的写矩阵快速幂
Matrix Power Series
- 描述
- Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
- 输入
- The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 10^9) and m (m < 10^4). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
- 输出
- Output the elements of S modulo m in the same way as A is given.
- 样例输入
-
2 2 4
0 1
1 1 - 样例输出
-
1 2
2 3#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int moder = ; const int N=;
int c[N][N],a[N][N],b[N][N],n,mo;
void mult(int x[N][N],int y[N][N])//x = x*y
{
int i,j,k;
for (i=;i<=n;i++)
for (j=;j<=n;j++)
{
c[i][j]=;
for (k=;k<=n;k++) c[i][j]=(c[i][j]+x[i][k]*y[k][j])%mo;
}
for (i=;i<=n;i++)
for (j=;j<=n;j++) x[i][j]=c[i][j];
} int main()
{
int m,i,j;
scanf("%d%d%d",&n,&m,&mo);
for (i=;i<=n;i++)
{
for (j=;j<=n;j++) scanf("%d",&a[i][j]);
a[i][i+n]=a[i+n][i+n]=b[i][i]=b[i+n][i+n]=; //b单位矩阵,a为所求的基础矩阵
}
n*=;
m++;
while(m>)
{
if (m%) mult(b,a);
m/=;
mult(a,a);
}
n/=;
for (i=;i<=n;i++) b[i][i+n]--;
for (i=;i<=n;i++)
{
for (j=;j<n;j++) printf("%d ",b[i][j+n]);
printf("%d\n",b[i][j+n]);
}
return ;
}网上看了许多快速幂的写法,感觉都很麻烦,只有这个写的很通俗易懂
但题目要求的是 A+A2+...+Ak,而不是单个矩阵的幂
那么我们可以构造一个分块的辅助矩阵 S,其中 A 为原矩阵,E 为单位矩阵,O 为0矩阵
我们将 S 取幂,会发现一个特性
Sk 右上角那一块不正是我们要求的 A+A2+...+Ak 吗?
于是我们构造出 S 矩阵,然后对它求矩阵快速幂即可,最后别忘了减去一个单位阵
转自 https://www.cnblogs.com/hadilo/p/5903514.html
nyoj299——如何优雅的写矩阵快速幂的更多相关文章
- HDU 5607 graph 矩阵快速幂 + 快速幂
这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...
- 矩阵快速幂--51nod-1242斐波那契数列的第N项
斐波那契额数列的第N项 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, ...
- POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10521 Accepted: 7477 Descri ...
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- HDU 2855 斐波那契+矩阵快速幂
http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出 ...
- HDU 4471 矩阵快速幂 Homework
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...
- 2014 Super Training #10 G Nostop --矩阵快速幂
原题: FZU 2173 http://acm.fzu.edu.cn/problem.php?pid=2173 一开始看到这个题毫无头绪,根本没想到是矩阵快速幂,其实看见k那么大,就应该想到用快速幂什 ...
随机推荐
- Java基础知识陷阱(二)
本文发表于本人博客. 上次说了一些关于字符串的知识,都是比较基础的,那这次也说下关于对象地址问题,比如传参.先看下面代码: public void changeInt(int a){ a = ; } ...
- lower_bound()函数,upper_bound()函数
1.查找:STL中关于二分查找的函数有三个lower_bound .upper_bound .binary_search .这三个函数都运用于有序区间(当然这也是运用二分查找的前提),下面记录一下这两 ...
- spring mvc 全局处理异常
spring框架支持很多种全局处理异常的方式 一.Spring MVC处理异常有4种方式: (1)使用Spring-MVC提供的SimpleMappingExceptionResolver: (2)实 ...
- Mac OS OpenVpN 连接设置(转)
下文介绍Mac OS连接使用OpenVPN方法教程,使用的软件是免费开源的Tunnelblick,当然也有其它连接软件,比如Viscosity,不过这个是付费的,还是前面的用的多. 1.下载安装Tun ...
- koa2+mongoose搭建框架模型
由于学的是java,所以此框架多少有点java的影子,我觉得不必排斥语言,只要思想好,所有语言均可以通用.项目分以下几层 app.js项目启动入口,类似于main函数 controller-view层 ...
- Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) D. Innokenty and a Football League
地址:http://codeforces.com/contest/782/problem/D 题目: D. Innokenty and a Football League time limit per ...
- typeof instanceof 和 obj.constructor
1.typeof用以获取一个变量或者表达式的类型,typeof一般只能返回如下几个结果: 'number','boolean','string','function'(函数),'object'(NU ...
- Django学习笔记之Queryset详解
Django ORM用到三个类:Manager.QuerySet.Model.Manager定义表级方法(表级方法就是影响一条或多条记录的方法),我们可以以models.Manager为父类,定义自己 ...
- 20145331 《Java程序设计》第4周学习总结
20145331 <Java程序设计>第4周学习总结 教材学习内容总结 •第六章 1.继承的定义与特点: 子类继承父类的特征和行为,使得子类具有父类的各种属性和方法.或子类从父类继承方法, ...
- 20145230熊佳炜《网络对抗》实验八:WEB基础
20145230熊佳炜<网络对抗>实验八:WEB基础 实验目标 Web前端HTML:能正常安装.启停Apache.理解HTML,理解表单,理解GET与POST方法,编写一个含有表单的HTM ...