Hadoop MapReduce任务的启动分析
exec "$JAVA" $JAVA_HEAP_MAX $HADOOP_OPTS $CLASS "$@"
org.apache.hadoop.util.RunJar
public static void main(String[] args) throws Exception {
int result = ToolRunner.run(new ThisClass(), args);
System.exit(result);
}
extends Configured implements Tool
boolean success = job2.waitForCompletion(true);
public boolean waitForCompletion(boolean verbose
) throws IOException, InterruptedException,
ClassNotFoundException {
if (state == JobState.DEFINE) {
submit();
}
if (verbose) {
monitorAndPrintJob();
} else {
// get the completion poll interval from the client.
int completionPollIntervalMillis =
Job.getCompletionPollInterval(cluster.getConf());
while (!isComplete()) {
try {
Thread.sleep(completionPollIntervalMillis);
} catch (InterruptedException ie) {
}
}
}
return isSuccessful();
}
while (!isComplete() || !reportedAfterCompletion) {
if (isComplete()) {
reportedAfterCompletion = true;
} else {
Thread.sleep(progMonitorPollIntervalMillis);
}
if (status.getState() == JobStatus.State.PREP) {
continue;
}
if (!reportedUberMode) {
reportedUberMode = true;
LOG.info("Job " + jobId + " running in uber mode : " + isUber());
}
String report =
(" map " + StringUtils.formatPercent(mapProgress(), 0)+
" reduce " +
StringUtils.formatPercent(reduceProgress(), 0));
if (!report.equals(lastReport)) {
LOG.info(report);
lastReport = report;
} TaskCompletionEvent[] events =
getTaskCompletionEvents(eventCounter, 10);
eventCounter += events.length;
printTaskEvents(events, filter, profiling, mapRanges, reduceRanges);
}
boolean success = isSuccessful();
if (success) {
LOG.info("Job " + jobId + " completed successfully");
} else {
LOG.info("Job " + jobId + " failed with state " + status.getState() +
" due to: " + status.getFailureInfo());
}
Counters counters = getCounters();
if (counters != null) {
LOG.info(counters.toString());
}
return success;
15/04/13 15:01:08 INFO mapreduce.Job: map 96% reduce 28%
15/04/13 15:01:09 INFO mapreduce.Job: map 98% reduce 28%
15/04/13 15:01:10 INFO mapreduce.Job: map 98% reduce 32%
15/04/13 15:01:13 INFO mapreduce.Job: map 100% reduce 33%
15/04/13 15:01:16 INFO mapreduce.Job: map 100% reduce 37%
15/04/13 15:01:19 INFO mapreduce.Job: map 100% reduce 46%
15/04/13 15:01:22 INFO mapreduce.Job: map 100% reduce 54%
15/04/13 15:01:25 INFO mapreduce.Job: map 100% reduce 62%
15/04/13 15:01:28 INFO mapreduce.Job: map 100% reduce 68%
15/04/13 15:01:31 INFO mapreduce.Job: map 100% reduce 71%
15/04/13 15:01:34 INFO mapreduce.Job: map 100% reduce 76%
15/04/13 15:01:35 INFO mapreduce.Job: map 100% reduce 100%
15/04/13 15:01:37 INFO mapreduce.Job: Job job_1421455790417_222365 completed successfully
15/04/13 15:01:37 INFO mapreduce.Job: Counters: 46
File System Counters
FILE: Number of bytes read=70894655
FILE: Number of bytes written=158829484
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=5151416348
HDFS: Number of bytes written=78309
HDFS: Number of read operations=1091
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
Hadoop MapReduce任务的启动分析的更多相关文章
- Hadoop MapReduce执行过程实例分析
1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程 ...
- 使用hadoop mapreduce分析mongodb数据
使用hadoop mapreduce分析mongodb数据 (现在很多互联网爬虫将数据存入mongdb中,所以研究了一下,写此文档) 版权声明:本文为yunshuxueyuan原创文章.如需转载请标明 ...
- 【Big Data - Hadoop - MapReduce】初学Hadoop之图解MapReduce与WordCount示例分析
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...
- 初学Hadoop之图解MapReduce与WordCount示例分析
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...
- Hadoop MapReduce编程 API入门系列之MapReduce多种输出格式分析(十九)
不多说,直接上代码. 假如这里有一份邮箱数据文件,我们期望统计邮箱出现次数并按照邮箱的类别,将这些邮箱分别输出到不同文件路径下. 代码版本1 package zhouls.bigdata.myMapR ...
- hadoop MapReduce Yarn运行机制
原 Hadoop MapReduce 框架的问题 原hadoop的MapReduce框架图 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobClient) ...
- 四种方案:将OpenStack私有云部署到Hadoop MapReduce环境中
摘要:OpenStack与Hadoop被誉为继Linux之后最有可能获得巨大成功的开源项目.这二者如何结合成为更猛的新方案?业内给出两种答案:Hadoop跑在OpenStack上或OpenStack部 ...
- Hadoop Mapreduce 参数 (一)
参考 hadoop权威指南 第六章,6.4节 背景 hadoop,mapreduce就如MVC,spring一样现在已经是烂大街了,虽然用过,但是说看过源码么,没有,调过参数么?调过,调到刚好能跑起来 ...
- [python]使用python实现Hadoop MapReduce程序:计算一组数据的均值和方差
这是参照<机器学习实战>中第15章“大数据与MapReduce”的内容,因为作者写作时hadoop版本和现在的版本相差很大,所以在Hadoop上运行python写的MapReduce程序时 ...
随机推荐
- 《Effective C++》第2章 构造/析构/赋值运算(1)-读书笔记
章节回顾: <Effective C++>第1章 让自己习惯C++-读书笔记 <Effective C++>第2章 构造/析构/赋值运算(1)-读书笔记 <Effecti ...
- Code Cache相关知识总结
codecache代码缓存区,主要存放JIT所编译的代码,同时还有Java所使用的本地方法代码也会存储在codecache中.不同的jvm.不同的启动方式codecache的默认值大小也不尽相同. J ...
- Spring报错:java.io.FileNotFoundException: class path resource [applicationContext.xml] cannot be opened because it does not exist
感谢:http://blog.chinaunix.net/uid-20681545-id-184633.html提供的解决方案,非常棒 ! 问题说明: 新建一个Spring项目,新建一个Bean类:H ...
- python3精简笔记(三)——高级特性
Python中 1行代码能实现的功能,决不写5行代码.请始终牢记,代码越少,开发效率越高. 切片 取一个list或tuple的部分元素是非常常见的操作.Python提供了切片(Slice)操作符 L ...
- Node 抓取非utf-8编码页面
代码示例 Nodejs抓取非utf8字符编码的页面 -- Ruby's Louvre var http = require('http'); var iconv = require('iconv-li ...
- [转] 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践
转自知乎上看到的一篇很棒的文章:用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文 ...
- iPhone开发资源汇总
如何用Facebook graphic api上传视频: http://developers.facebook.com/blog/post/532/ Keychain保存数据封装: https://g ...
- from sklearn.datasets import make_classification创建分类数据集
make_classification创建用于分类的数据集,官方文档 例子: ### 创建模型 def create_model(): # 生成数据 from sklearn.datasets imp ...
- jdbcTemplate的一些常用方法
前言 最近的项目中由于只进行查询,所以使用了jdbcTemplate来直接操作sql进行持久层的操作,初次接触jdbcTemplate,从最开始的什么都不知道到现在基本方法都大致知道什么意思,特此记录 ...
- python学习-序列排序
python的排序中,可以使用内置的sort()来对序列进行排序,也可以使用内置的sorted()函数对序列进行排序,区别是,当使用sort()时,是对原序列进行排序,而sorted()则是生成一个新 ...