Hadoop MapReduce任务的启动分析
exec "$JAVA" $JAVA_HEAP_MAX $HADOOP_OPTS $CLASS "$@"
org.apache.hadoop.util.RunJar
public static void main(String[] args) throws Exception {
int result = ToolRunner.run(new ThisClass(), args);
System.exit(result);
}
extends Configured implements Tool
boolean success = job2.waitForCompletion(true);
public boolean waitForCompletion(boolean verbose
) throws IOException, InterruptedException,
ClassNotFoundException {
if (state == JobState.DEFINE) {
submit();
}
if (verbose) {
monitorAndPrintJob();
} else {
// get the completion poll interval from the client.
int completionPollIntervalMillis =
Job.getCompletionPollInterval(cluster.getConf());
while (!isComplete()) {
try {
Thread.sleep(completionPollIntervalMillis);
} catch (InterruptedException ie) {
}
}
}
return isSuccessful();
}
while (!isComplete() || !reportedAfterCompletion) {
if (isComplete()) {
reportedAfterCompletion = true;
} else {
Thread.sleep(progMonitorPollIntervalMillis);
}
if (status.getState() == JobStatus.State.PREP) {
continue;
}
if (!reportedUberMode) {
reportedUberMode = true;
LOG.info("Job " + jobId + " running in uber mode : " + isUber());
}
String report =
(" map " + StringUtils.formatPercent(mapProgress(), 0)+
" reduce " +
StringUtils.formatPercent(reduceProgress(), 0));
if (!report.equals(lastReport)) {
LOG.info(report);
lastReport = report;
} TaskCompletionEvent[] events =
getTaskCompletionEvents(eventCounter, 10);
eventCounter += events.length;
printTaskEvents(events, filter, profiling, mapRanges, reduceRanges);
}
boolean success = isSuccessful();
if (success) {
LOG.info("Job " + jobId + " completed successfully");
} else {
LOG.info("Job " + jobId + " failed with state " + status.getState() +
" due to: " + status.getFailureInfo());
}
Counters counters = getCounters();
if (counters != null) {
LOG.info(counters.toString());
}
return success;
15/04/13 15:01:08 INFO mapreduce.Job: map 96% reduce 28%
15/04/13 15:01:09 INFO mapreduce.Job: map 98% reduce 28%
15/04/13 15:01:10 INFO mapreduce.Job: map 98% reduce 32%
15/04/13 15:01:13 INFO mapreduce.Job: map 100% reduce 33%
15/04/13 15:01:16 INFO mapreduce.Job: map 100% reduce 37%
15/04/13 15:01:19 INFO mapreduce.Job: map 100% reduce 46%
15/04/13 15:01:22 INFO mapreduce.Job: map 100% reduce 54%
15/04/13 15:01:25 INFO mapreduce.Job: map 100% reduce 62%
15/04/13 15:01:28 INFO mapreduce.Job: map 100% reduce 68%
15/04/13 15:01:31 INFO mapreduce.Job: map 100% reduce 71%
15/04/13 15:01:34 INFO mapreduce.Job: map 100% reduce 76%
15/04/13 15:01:35 INFO mapreduce.Job: map 100% reduce 100%
15/04/13 15:01:37 INFO mapreduce.Job: Job job_1421455790417_222365 completed successfully
15/04/13 15:01:37 INFO mapreduce.Job: Counters: 46
File System Counters
FILE: Number of bytes read=70894655
FILE: Number of bytes written=158829484
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=5151416348
HDFS: Number of bytes written=78309
HDFS: Number of read operations=1091
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
Hadoop MapReduce任务的启动分析的更多相关文章
- Hadoop MapReduce执行过程实例分析
1.MapReduce是如何执行任务的?2.Mapper任务是怎样的一个过程?3.Reduce是如何执行任务的?4.键值对是如何编号的?5.实例,如何计算没见最高气温? 分析MapReduce执行过程 ...
- 使用hadoop mapreduce分析mongodb数据
使用hadoop mapreduce分析mongodb数据 (现在很多互联网爬虫将数据存入mongdb中,所以研究了一下,写此文档) 版权声明:本文为yunshuxueyuan原创文章.如需转载请标明 ...
- 【Big Data - Hadoop - MapReduce】初学Hadoop之图解MapReduce与WordCount示例分析
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...
- 初学Hadoop之图解MapReduce与WordCount示例分析
Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...
- Hadoop MapReduce编程 API入门系列之MapReduce多种输出格式分析(十九)
不多说,直接上代码. 假如这里有一份邮箱数据文件,我们期望统计邮箱出现次数并按照邮箱的类别,将这些邮箱分别输出到不同文件路径下. 代码版本1 package zhouls.bigdata.myMapR ...
- hadoop MapReduce Yarn运行机制
原 Hadoop MapReduce 框架的问题 原hadoop的MapReduce框架图 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobClient) ...
- 四种方案:将OpenStack私有云部署到Hadoop MapReduce环境中
摘要:OpenStack与Hadoop被誉为继Linux之后最有可能获得巨大成功的开源项目.这二者如何结合成为更猛的新方案?业内给出两种答案:Hadoop跑在OpenStack上或OpenStack部 ...
- Hadoop Mapreduce 参数 (一)
参考 hadoop权威指南 第六章,6.4节 背景 hadoop,mapreduce就如MVC,spring一样现在已经是烂大街了,虽然用过,但是说看过源码么,没有,调过参数么?调过,调到刚好能跑起来 ...
- [python]使用python实现Hadoop MapReduce程序:计算一组数据的均值和方差
这是参照<机器学习实战>中第15章“大数据与MapReduce”的内容,因为作者写作时hadoop版本和现在的版本相差很大,所以在Hadoop上运行python写的MapReduce程序时 ...
随机推荐
- linux系统挂载NTFS移动硬盘
有时候做大数据量迁移时,为了快速迁移大数据,有可能在Linux服务器上临时挂载NTFS格式的移动硬盘, 一般情况下,Linux是识别不了NTFS格式移动硬盘的(需要重编译Linux核心才能,加挂NTF ...
- 程序包需要 NuGet 客户端版本“2.12”或更高版本,但当前的 NuGet 版本为“2.8.50313.46”
由于安装install-package newtonsoft.json 会出现需要 NuGet 客户端版本“2.12”或更高版本来安装,于是换成旧版的newtonsoft.json PM> ...
- 2018-2019-2 网络对抗技术 20165202 Exp6 信息搜集与漏洞扫描
博客目录 一.实践目标 二.实践内容 各种搜索技巧的应用 DNS IP注册信息的查询 基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的查点 漏洞扫描:会扫,会看报告,会查漏洞说明,会 ...
- New Concept English Two 34 game over
$课文95 纯属虚构 1049. When the Ambassador or Escalopia returned home for lunch, his wife got a shock. 当艾 ...
- Linux:运行级别,root密码重置,救援模式,安装图形化界面
运行级别,root密码重置,救援模式,安装图形界面 运行级别 1.查看当前系统的运行级别 runlevel 2.认识各个运行级别以及开机自启运行级别 Linux系统运行级别共7个执行 vi /etc/ ...
- Swift 无操作时自动登出
main.swift中代码: import Foundation import UIKit UIApplicationMain( CommandLine.argc, UnsafeMutableRawP ...
- NSPort
NSPort是一个描述通信通道的抽象类.通信发生在两个NSPort对象之中,这两个NSPort对象通常属于不同的进程或任务.分发对象系统使用NSPort对象来返回或发送NSProtMessage对象. ...
- Objective C----手动管理内存和自动管理内存
对象的引用计数(Reference Counting) 正常情况下,当一段代码需要访问某个对象时,该对象的引用的计数加1:当这段代码不再访问该对象时,该对象的引用计数减1,表示这段代码不再访问该对象: ...
- C++ 回调函数的几种策略
Stackoverflow中提出了这样一个问题:假设我们实现了一个User类,Library类,现在Library类中utility需要回调User中func方法,总结答案,常见的几种方法如下: 静态 ...
- discuz数据库迁移,改密码后,相关配置文件修改
网上看到这篇文章,觉得有用就收藏下 网站系统需要修改的位置有两处 Discuz 和 UC-center ①路径:/wwwroot/config/config_global.php 这个根据你网站安装的 ...