这题模数是9937还不是素数,求逆元还得手动求。

项链翻转一样的算一种相当于就是一种类型的置换,那么在n长度内,对于每个i其循环节数为(i,n),但是由于n<=2^32,肯定不能直接枚举,所有考虑枚举gcd,对应的n/gcd就是其个数,有点容斥的思想。全部累加最后除以n就计算好染色方案了。

注意这题很卡时间,而且很玄的用long long会错,要先求出上界再枚举,循环中i*i的循环条件会很慢。

/** @Date    : 2017-09-18 23:33:30
* @FileName: HDU 2239 EXGCD 求逆元.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL __int64
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5 + 10;
const double eps = 1e-8;
const LL mod = 9937;
int pri[N];
int c = 0;
bool vis[N];
void prime()
{
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i]) pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i *pri[j]] = 1;
if(i % pri[j] == 0)
break;
}
}
} LL get_phi(int x)
{
LL res = x;
int ma = sqrt(x + 0.5);
for(int i = 0; i < c && pri[i] <= ma; i++)
{
if(x % pri[i] == 0)
{
while(x % pri[i] == 0)
x /= pri[i];
res = res / pri[i] * (pri[i] - 1);
}
}
if(x > 1) res = res / x * (x - 1);
return res % mod;
}
LL exgcd(LL a, LL b, LL x, LL y)
{
LL d = a;
if(b == 0)
x = 1, y = 0;
else
{
d = exgcd(b, a % b, y, x);
y -= (a / b) * x;
}
return d;
} LL fpow(LL a, LL n)
{
LL res = 1;
while(n)
{
if(n & 1)
res = res * a % mod;
a = a * a % mod;
n >>= 1;
}
return res;
} int main()
{
LL n, m;
prime(); while(~scanf("%I64d%I64d", &n, &m))
{
LL ans = 0;
int ma = sqrt(n + 0.5);
for(int i = 1; i <= ma; i++)
{
if(n % i != 0)
continue;
ans = (ans + get_phi(n / i) * fpow(m, i) % mod + mod) % mod;
if(i != n / i)
ans = (ans + get_phi(i) * fpow(m, n / i) % mod + mod) % mod;
}
for(LL i = 0; i < mod; i++)
if(i * n % mod == ans % mod)
{
ans = i;
break;
}
/*cout << ans << endl;
ans = ans * mod % (n * mod) / n;*/
printf("%I64d\n", ans);
}
return 0;
}

HDU 2239 polya计数 欧拉函数的更多相关文章

  1. poj2409 & 2154 polya计数+欧拉函数优化

    这两个题都是项链珠子的染色问题 也是polya定理的最基本和最经典的应用之一 题目大意: 用m种颜色染n个珠子构成的项链,问最终形成的等价类有多少种 项链是一个环.通过旋转或者镜像对称都可以得到置换 ...

  2. poj 2154 Color(polya计数 + 欧拉函数优化)

    http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...

  3. 【poj2154】Color Polya定理+欧拉函数

    题目描述 $T$ 组询问,用 $n$ 种颜色去染 $n$ 个点的环,旋转后相同视为同构.求不同构的环的个数模 $p$ 的结果. $T\le 3500,n\le 10^9,p\le 30000$ . 题 ...

  4. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 5430 Reflect(欧拉函数)

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430 从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点. 问本质不同的发射的方案数. 输入描述 ...

  6. hdu 5279 Reflect phi 欧拉函数

    Reflect Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest_chi ...

  7. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  8. POJ2154 Color【 polya定理+欧拉函数优化】(三个例题)

    由于这是第一天去实现polya题,所以由易到难,先来个铺垫题(假设读者是看过课件的,不然可能会对有些“显然”的地方会看不懂): 一:POJ1286 Necklace of Beads :有三种颜色,问 ...

  9. poj2154Color polya定理+欧拉函数优化

    没想到贱贱的数据居然是错的..搞得我调了一中午+晚上一小时(哦不d飞LJH掉RP毕竟他是BUFF)结果重判就对了五次.. 回归正题,这题傻子都看得出是polya定理(如果你不是傻子就看这里),还没有翻 ...

随机推荐

  1. 中国剩余定理---FZU 1402 猪的安家

    J - 猪的安家 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  2. Ubuntu系统升级内核方法

    一.查看内核版本 $ uname-sr //查看内核版本 二.去Ubuntu网站http://kernel.ubuntu.com/~kernel-ppa/mainline/下载所需版本的deb文件 w ...

  3. lintcode-418-整数转罗马数字

    418-整数转罗马数字 给定一个整数,将其转换成罗马数字. 返回的结果要求在1-3999的范围内. 说明 什么是 罗马数字? https://en.wikipedia.org/wiki/Roman_n ...

  4. 【Nginx】优化配置

    nginx优化 突破十万并发 一.一般来说nginx 配置文件中对优化比较有作用的为以下几项: 1.  worker_processes 8; nginx 进程数,建议按照cpu 数目来指定,一般为它 ...

  5. 开源人脸识别face_recognition

    环境:python36 1.安装dlib.face_recognition windows版 下载dlib,cp后面是py版本 下载地址:https://pypi.org/simple/dlib/ 提 ...

  6. vue.cli实现tab切换效果

    <template> <div class="cp-select">                     <div class="lef ...

  7. 【EF】EF Code-First数据迁移

    Code-First数据迁移  首先要通过NuGet将EF升级至最新版本. 新建MVC 4项目MvcMigrationDemo 添加数据模型 Person 和 Department,定义如下: usi ...

  8. MySQL主键和外键使用及说明

    摘自网上一个经典的例子:大哥和小弟 一.外键约束 MySQL通过外键约束来保证表与表之间的数据的完整性和准确性. 外键的使用条件:  1.两个表必须是InnoDB表,MyISAM表暂时不支持外键(据说 ...

  9. DjangoORM基本增删改查

    1. 下载并且安装navicat premium,连接到db.sqlite3数据库. 2.先在urls.py中增加一条对应关系,专门用来做测试. 3.此时models.py中的代码如下: 4. 对于O ...

  10. 【刷题】HDU 4966 GGS-DDU

    Problem Description Do you think this is a strange problem name? That is because you don't know its ...