GCD HDU - 1695 莫比乌斯反演入门
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101
感觉讲的很好的一个博客:https://www.cnblogs.com/peng-ym/p/8647856.html
今天刚开始学莫比乌斯反演,先据我所了解的说一下。
首先是莫比乌斯函数。
1,mu(x).当x为1时,mu(1)等于1。
2,当x为素数时,mu(x)=-1。
3,当x能唯一分解成多个不同的素数相乘的时候(不能有重复的素数)mu(x)=(-1)的k次方,k代表的是素数的个数。
4,当x不能被唯一的分解成多个素数相乘的时候,也就是他的因子中存在重复的素数,这个时候,mu(x)=0.
然后是一个等式 (d是n的因子).
然后就是两个等式(等我学会证明就回来补~)
然后对于当前这个题,选择(1,b),(1,d) 中满足gcd(x,y)==k的对数,(1<=x<=b),(1<=y<=d) .
也就是说 gcd(x/k,y.k)==1满足的对数.
然后再开始分析一波:
我们令f(k)为满足(a,b),(c,d)中的gcd为k的对数.然后F(k)就是满足(a,b),(c,d)中的gcd为k的倍数的对数.
F(k)就等于(b/k)*(d/k).
所以说,这个题就转换为了求满足的总和
但是要注意去重.我们一开始定义的是ans=f(1)( (1<=x<=b) &&(1<=y<=c) )中的解,但是很明显,(1.c)包含(1,b),所以这一块会有重复的计算( (1<=x<=b)&&(1<=x<=b) ),并且(t1,t2)和(t2,t1)在(1,b)这块区域,是应当被看做一组的,所以最终结果应该是
ans=f ( (1,b) , (1,c) )-f ( (1,b) , (1,b) ) / 2.
AC代码:
#include<iostream>
#include<cmath>
#include<string>
#include<algorithm>
#include<cstring>
#include<stdio.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn =100000+100;
# define ll long long
ll mu[maxn];
ll vis[maxn];
ll prim[maxn];
void Get_mu(ll n)
{
mu[1]=1;
int cnt=0;
for(ll i=2; i<n; i++)
{
if(!vis[i])
{
prim[cnt++]=i;
mu[i]=-1;
}
for(ll j=0; j<cnt; j++)
{
ll k=i*prim[j];
if(k>n)break;
vis[k]=1;
if(i%prim[j])
{
mu[k]=-mu[i];
}
else
{
mu[k]=0;
break;
}
}
}
}
int main()
{
Get_mu(maxn);
ll t;
ll Case=0;
scanf("%lld",&t);
while(t--)
{
ll a,b,c,d,k;
scanf("%lld %lld %lld %lld %lld",&a,&b,&c,&d,&k);
if(k==0)
{
printf("Case %lld: 0\n",++Case);
continue;
}
b/=k;
d/=k;
ll ans=0,res=0;
ll minn=min(b,d);
for(ll i=1; i<=minn; i++)
{
ans+=mu[i]*(b/i)*(d/i);
res+=mu[i]*(minn/i)*(minn/i);
}
// cout<<ans<<" "<<res<<endl;
printf("Case %lld: %lld\n",++Case,ans-res/2);
}
return 0;
}
GCD HDU - 1695 莫比乌斯反演入门的更多相关文章
- HDU 1695 (莫比乌斯反演) GCD
题意: 从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序) 分析: 虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是 ...
- hdu 1695(莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- 【CJOJ2512】gcd之和(莫比乌斯反演)
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)
题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- BZOJ 2301 莫比乌斯反演入门
2301: [HAOI2011]Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函 ...
- HDU 4746 (莫比乌斯反演) Mophues
这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...
随机推荐
- 因为NLS_LANG 造成 Oracle数据库丢失 中文字符集兼容问题的处理.
接着上一封blog. 因为sqlplus的 乱码问题 我修改了 注册表里面 NLS_LANG 的 value值.主要改动为: NLS_LANG source: SIMPLIFIED CHINESE_C ...
- Windows搭建Log4Net+FileBeat+ELK日志分析系统过程
参考博客:http://udn.yyuap.com/thread-54591-1-1.html ; https://www.cnblogs.com/yanbinliu/p/6208626.html ; ...
- 在Delphi中动态地使用SQL查询语句 Adoquery sql 参数 冒号
在Delphi中动态地使用SQL查询语句 在一般的数据库管理系统中,通常都需要应用SQL查询语句来提高程序的动态特性.下面介绍如何在Delphi中实现这种功能.在Delphi中,使用SQL查询语句的途 ...
- HDU4466_Triangle
今天比赛做的一个题目,不过今天终于感受到了复旦题目有多坑了. 题目的意思是给你一段长为n个单位长度的直线,你可以选择任意连续单位长度的线段组成三角形,可以组成任意你可以组成任意多个三角形,且要求其中所 ...
- BZOJ4953 Wf2017Posterize(动态规划)
设f[i][j]为前i种强度选了j种且其中第i种选时前i个的最小误差.转移枚举上个选啥前缀和优化即可. #include<iostream> #include<cstdio> ...
- TortoiseSVN 和 VisualSVN Server 使用教程
TortoiseSVN 和 VisualSVN Server 使用教程 来源 https://blog.csdn.net/xgf415/article/details/75196360 目录: SVN ...
- PD模型创建完获取生成表脚本
1.双击表名,弹出属性对话框-->General----> Owner 表名前缀,如XX.SYS_TABLE 最好去掉 2.Preview 复制里面的脚本到数据库执行下即可
- 跟我学Spring Cloud(Finchley版)-20-Spring Cloud Config-Git仓库配置详解 原
在跟我学Spring Cloud(Finchley版)-19-配置中心-Spring Cloud Config 一节中,已实现使用Git仓库作为Config Server的后端存储,本节详细探讨如何配 ...
- Spring Boot系列教程三:使用devtools实现热部署
一.前言 Eclipse下使用spring-tool-suite插件创建一个spring boot 工程,通过右键“Run As”--->"Spring Boot App"来 ...
- 【BZOJ3028】食物(生成函数)
[BZOJ3028]食物(生成函数) 题面 一个人要带\(n\)个物品,共有\(8\)种物品,每种的限制分别如下: 偶数个;0/1个;0/1/2个;奇数个; 4的倍数个;0/1/2/3个;0/1个;3 ...