GCD HDU - 1695 莫比乌斯反演入门
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101
感觉讲的很好的一个博客:https://www.cnblogs.com/peng-ym/p/8647856.html
今天刚开始学莫比乌斯反演,先据我所了解的说一下。
首先是莫比乌斯函数。
1,mu(x).当x为1时,mu(1)等于1。
2,当x为素数时,mu(x)=-1。
3,当x能唯一分解成多个不同的素数相乘的时候(不能有重复的素数)mu(x)=(-1)的k次方,k代表的是素数的个数。
4,当x不能被唯一的分解成多个素数相乘的时候,也就是他的因子中存在重复的素数,这个时候,mu(x)=0.
然后是一个等式 (d是n的因子).
然后就是两个等式(等我学会证明就回来补~)
然后对于当前这个题,选择(1,b),(1,d) 中满足gcd(x,y)==k的对数,(1<=x<=b),(1<=y<=d) .
也就是说 gcd(x/k,y.k)==1满足的对数.
然后再开始分析一波:
我们令f(k)为满足(a,b),(c,d)中的gcd为k的对数.然后F(k)就是满足(a,b),(c,d)中的gcd为k的倍数的对数.
F(k)就等于(b/k)*(d/k).
所以说,这个题就转换为了求满足的总和
但是要注意去重.我们一开始定义的是ans=f(1)( (1<=x<=b) &&(1<=y<=c) )中的解,但是很明显,(1.c)包含(1,b),所以这一块会有重复的计算( (1<=x<=b)&&(1<=x<=b) ),并且(t1,t2)和(t2,t1)在(1,b)这块区域,是应当被看做一组的,所以最终结果应该是
ans=f ( (1,b) , (1,c) )-f ( (1,b) , (1,b) ) / 2.
AC代码:
#include<iostream>
#include<cmath>
#include<string>
#include<algorithm>
#include<cstring>
#include<stdio.h>
using namespace std;
# define ll long long
# define inf 0x3f3f3f3f
const int maxn =100000+100;
# define ll long long
ll mu[maxn];
ll vis[maxn];
ll prim[maxn];
void Get_mu(ll n)
{
mu[1]=1;
int cnt=0;
for(ll i=2; i<n; i++)
{
if(!vis[i])
{
prim[cnt++]=i;
mu[i]=-1;
}
for(ll j=0; j<cnt; j++)
{
ll k=i*prim[j];
if(k>n)break;
vis[k]=1;
if(i%prim[j])
{
mu[k]=-mu[i];
}
else
{
mu[k]=0;
break;
}
}
}
}
int main()
{
Get_mu(maxn);
ll t;
ll Case=0;
scanf("%lld",&t);
while(t--)
{
ll a,b,c,d,k;
scanf("%lld %lld %lld %lld %lld",&a,&b,&c,&d,&k);
if(k==0)
{
printf("Case %lld: 0\n",++Case);
continue;
}
b/=k;
d/=k;
ll ans=0,res=0;
ll minn=min(b,d);
for(ll i=1; i<=minn; i++)
{
ans+=mu[i]*(b/i)*(d/i);
res+=mu[i]*(minn/i)*(minn/i);
}
// cout<<ans<<" "<<res<<endl;
printf("Case %lld: %lld\n",++Case,ans-res/2);
}
return 0;
}
GCD HDU - 1695 莫比乌斯反演入门的更多相关文章
- HDU 1695 (莫比乌斯反演) GCD
题意: 从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序) 分析: 虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是 ...
- hdu 1695(莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- D - GCD HDU - 1695 -模板-莫比乌斯容斥
D - GCD HDU - 1695 思路: 都 除以 k 后转化为 1-b/k 1-d/k中找互质的对数,但是需要去重一下 (x,y) (y,x) 这种情况. 这种情况出现 x ,y ...
- 【CJOJ2512】gcd之和(莫比乌斯反演)
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)
题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- BZOJ 2301 莫比乌斯反演入门
2301: [HAOI2011]Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函 ...
- HDU 4746 (莫比乌斯反演) Mophues
这道题看巨巨的题解看了好久,好久.. 本文转自hdu4746(莫比乌斯反演) 题意:给出n, m, p,求有多少对a, b满足gcd(a, b)的素因子个数<=p,(其中1<=a<= ...
随机推荐
- 设计模式PHP篇(三)————适配器模式
简单的适配器模式: interface Adaptor { public function read(); public function write(); } class File implemen ...
- 【PHP】session失效时间
最近用到php中session时,忽然发现php中的session有点让人头疼啊,要设置一个严格的特定时间内过期的session还真不太容易!后来在网上查询时,发现这个问题还真是有点普遍,网上也有关于 ...
- 小程序 switch按钮
<view class='pay-switch'> <switch color='#1F3238' data-gongprice='{{gongprice}}' data-disco ...
- C语言 aabbcc、abc、fabc、aabc
输入一个字符串,匹配字符串中连续出现的字符串.并且连续个数相等 如输入 aabbcc.abc.fabc.aabc.aabbc 分别输出yes还是no #include<stdio.h>#i ...
- 第146天:移动H5前端性能优化
移动H5前端性能优化 一.概述 1. PC优化手段在Mobile侧同样适用 2. 在Mobile侧我们提出三秒种渲染完成首屏指标 3. 基于第二点,首屏加载3秒完成或使用Loading 4. 基于联通 ...
- HDU4810_Wall Painting
题目很简单. 给你n个数,输出n个答案,第i个答案表示从n个数里取遍i个数的异或值的和. 其实每一个数最多也就32位,把所有的数分解,保存每一位总共有多少个1,最后要是这一位的异或结果为1,那么在所有 ...
- resp.getWriter().print的注意点
- 51nod-1227-平均最小公倍数
题意 定义 \(n\) 的平均最小公倍数: \[ A(n)=\frac{1}{n}\sum _{i=1}^n\text{lcm}(n,i) \] 求 \[ \sum _{i=L}^RA(i) \] \ ...
- elsarticle模板 去掉摘要前后的两条横线
参考:http://www.newsmth.net/nForum/#!article/TeX/316697?au=ericfire 如图:使用elsarticle模板修改PDF格式,去掉摘要前后的横线 ...
- BZOJ5017 Snoi2017炸弹(线段树+强连通分量+缩点+传递闭包)
容易想到每个炸弹向其能引爆的炸弹连边,tarjan缩点后bitset传递闭包.进一步发现每个炸弹能直接引爆的炸弹是一段连续区间,于是线段树优化建图即可让边的数量降至O(nlogn).再冷静一下由于能间 ...