pca是一种黑箱子式的降维方式,通过映射,希望投影后的数据尽可能的分散, 因此要保证映射后的方差尽可能大,下一个映射的方向与当前映射方向正交

pca的步骤:

第一步: 首先要对当前数据(去均值)求协方差矩阵,协方差矩阵= 数据*数据的转置/(m-1) m表示的列数,对角线上表示的是方差,其他位置表示的是协方差

第二步:需要通过矩阵对角化,使得协方差为0,只存在对角线方向的数据,这个时候就能得到我们的特征值和特征向量

第三步: 将当前数据*特征向量就完成了降维工作,特征值/特征值之和, 可以表示特征值对应特征向量的表达重要性

下面是程序的说明

第一步:数据导入, 去均值, 求协方差

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt df = pd.read_csv('iris.data')
print(df.head()) df.columns=['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'class']
print(df.head()) # 用来储存变量
X = df.ix[:, 0:4].values
#用来储存标签
y = df.ix[:, 4].values msg ={'Iris-setosa':0, 'Iris-versicolor':1, 'Iris-virginica':2}
df['class'] = df['class'].map(msg) #把字母换成数字 #进行标准化
from sklearn.preprocessing import StandardScaler
Scaler = StandardScaler()
X_Scaler = Scaler.fit_transform(X) # 求每一行的均值
mean_vec = np.mean(X_Scaler, axis=0)
#去均值后求协方差矩阵
cov_mat = (X_Scaler-mean_vec).T.dot(X_Scaler-mean_vec)/(X_Scaler.shape[0]-1)
print(cov_mat)
#使用np求协方差矩阵,结果是一样的
cov_mat = np.cov(X_Scaler.T)
print(cov_mat)

第二步:求矩阵对角化的过程,就是一个求特征值和特征向量的过程

# 求特征值和特征向量
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
print(eig_vals, eig_vecs) #将特征值与特征向量合并
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:, i]) for i in range(len(eig_vals))] #组合对应
eig_pairs.sort(key=lambda x:x[0], reverse=True) tot = sum(eig_vals) var_exp = [(i/tot)*100 for i in sorted(eig_vals, reverse=True)]
#cumsum表示每前两个数相加
cum_var_exp = np.cumsum(var_exp)
#画图
plt.figure(figsize=(6, 4))
#画柱状图
plt.bar(range(4), var_exp, alpha=0.5, align='center',
label='individual explained variance')
#画步阶图
plt.step(range(4), cum_var_exp, where='mid',
label='cumulative explained variance')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()

第三步:将数据(去均值)

#把4维矩阵降低到两维,取前两个特征向量组合转置点乘即可

#np.hstack合并两个向量,reshape让一行变成一列,相当于转置
matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),
eig_pairs[1][1].reshape(4,1))) #变换以后的矩阵149*4 .dot 4*2 = 149*2
become_X_Scaler = X_Scaler.dot(matrix_w)
print(become_X_Scaler)
plt.figure(figsize=(6, 4)) color = np.array(['red', 'green', 'blue']) #构成行列式
plt.scatter(become_X_Scaler[:,0], become_X_Scaler[:,1], c=color[df['class']]) #画出种类对应颜色的散点图
plt.show()

跟我学算法-pca(降维)的更多相关文章

  1. 跟我学算法-PCA(降维)基本原理推导

    Pca首先 1.对数据进行去均值 2.构造一个基本的协方差矩阵1/m(X)*X^T 3对协方差矩阵进行变化,得到对角化矩阵,即对角化上有数值,其他位置上的数为0(协方差为0),即求特征值和特征向量的过 ...

  2. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  3. 机器学习算法-PCA降维技术

    机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特 ...

  4. 一步步教你轻松学奇异值分解SVD降维算法

    一步步教你轻松学奇异值分解SVD降维算法 (白宁超 2018年10月24日09:04:56 ) 摘要:奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分 ...

  5. PCA 降维算法详解 以及代码示例

    转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analys ...

  6. [机器学习理论] 降维算法PCA、SVD(部分内容,有待更新)

    几个概念 正交矩阵 在矩阵论中,正交矩阵(orthogonal matrix)是一个方块矩阵,其元素为实数,而且行向量与列向量皆为正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵:  其中,为单位矩阵. ...

  7. opencv基于PCA降维算法的人脸识别

    opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as n ...

  8. 机器学习实战基础(二十四):sklearn中的降维算法PCA和SVD(五) PCA与SVD 之 重要接口inverse_transform

    重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵 ...

  9. 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD

    PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...

随机推荐

  1. 在 Visual Studio中 使用Apache Cordova 开发安卓、iOS程序(自定义图标和闪屏)

    方法1 1台安装有linux的电脑,虚拟机也行,并安装imagemagick软件包.我用的是linux mint,直接在软件管理器中安装即可 把https://github.com/shamork/c ...

  2. 每天一个linux命令:【转载】mv命令

    mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files),是Linux系统下常用的命令,经常用来备份文件或者目录. 1.命令格式: mv [选项] 源文件或目 ...

  3. 《DSP using MATLAB》示例Example 6.27

    代码: % r = 0.9; theta = (pi/180)*[-55:5:-35, 35:5:55]'; p = r*exp(j*theta); a = poly(p); b = 1; w = [ ...

  4. 百度地图API秘钥生成步骤

    百度API

  5. LG3835 【模板】可持久化平衡树

    题意 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本): 插入x数 删除x数(若有多个相同的数,因只删除一个,如果没有请忽略该操作) 查询x数的排名 ...

  6. C# 汉字转拼音 方法(汉字的发音不过400多种(不算声调))

    /* * 2009年8月6日13:19:20 * 调用:this.label1.Text = DXHanZiToPinYin.DXHanZiToPinYin.Convert(this.textBox1 ...

  7. python模块--logging

    一.logging模块的简单应用 import logging logging.debug('debug message') logging.info('ingo message') logging. ...

  8. quick3.3rc1导入工程到ADT

    1.libcocos2dx  路径到/quick-3.3rc1/cocos/platform/android/java这一层 2.quick项目 路径到D:\codeide\test11\framew ...

  9. bzoj2442[Usaco2011 Open]修剪草坪——单调队列优化

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 考虑记录前 i 个.末尾 j 个连续选上的最大值.发现时空会爆. 又发现大量的转移形如 ...

  10. 解决asp.net上传文件时文件太大导致的错误

    即使在web.config中添加了节点和设置依然是不行的,还是报文件太大的错误, <httpModules>       <add name="UploadHttpModu ...