std::unordered_map

template < class Key,                                    // unordered_map::key_type
class T, // unordered_map::mapped_type
class Hash = hash<Key>, // unordered_map::hasher
class Pred = equal_to<Key>, // unordered_map::key_equal
class Alloc = allocator< pair<const Key,T> > // unordered_map::allocator_type
> class unordered_map;

Unordered Map

Unordered maps are associative containers that store elements formed by the combination of a key value and a mapped value, and which allows for fast retrieval of individual elements based on their keys.

In an unordered_map, the key value is generally used to uniquely identify the element, while the mapped value is an object with the content associated to this key. Types of key and mapped value may differ.

Internally, the elements in the unordered_map are not sorted in any particular order with respect to either their key or mapped values, but organized into buckets(桶) depending on their hash values to allow for fast access to individual elements directly by their key values (with a constant average time complexity on average).

unordered_map containers are faster than map containers to access individual elements by their key, although they are generally less efficient for range iteration through a subset of their elements.

Unordered maps implement the direct access operator (operator[]) which allows for direct access of the mapped value using its key value as argument.

Iterators in the container are at least forward iterators.

Container properties

  • Associative Elements in associative containers are referenced by their key and not by their absolute position in the container.
  • Unordered Unordered containers organize their elements using hash tables that allow for fast access to elements by their key.
  • Map Each element associates a key to a mapped value: Keys are meant to identify the elements whose main content is the mapped value.
  • Unique keys No two elements in the container can have equivalent keys.
  • Allocator-aware The container uses an allocator object to dynamically handle its storage needs.

Template parameters

  • Key

    Type of the key values. Each element in an unordered_map is uniquely identified by its key value.

    Aliased as member type unordered_map::key_type.

  • T

    Type of the mapped value. Each element in an unordered_map is used to store some data as its mapped value.

    Aliased as member type unordered_map::mapped_type. Note that this is not the same as unordered_map::value_type (see below).

  • Hash

    A unary(一元) function object type that takes an object of type key type as argument and returns a unique value of type size_t based on it. This can either be a class implementing a function call operator or a pointer to a function (see constructor for an example). This defaults to hash, which returns a hash value with a probability of collision approaching 1.0/std::numeric_limits<size_t>::max().

    The unordered_map object uses the hash values returned by this function to organize its elements internally, speeding up the process of locating individual elements.

    Aliased as member type unordered_map::hasher.

  • Pred

    A binary predicate(断言) that takes two arguments of the key type and returns a bool. The expression pred(a,b), where pred is an object of this type and a and b are key values, shall return true if a is to be considered equivalent to b. This can either be a class implementing a function call operator or a pointer to a function (see constructor for an example). This defaults to equal_to, which returns the same as applying the equal-to operator (a==b).

    The unordered_map object uses this expression to determine whether two element keys are equivalent. No two elements in an unordered_map container can have keys that yield true using this predicate.

    Aliased as member type unordered_map::key_equal.

  • Alloc

    Type of the allocator object used to define the storage allocation model. By default, the allocator class template is used, which defines the simplest memory allocation model and is value-independent.

    Aliased as member type unordered_map::allocator_type.

In the reference for the unordered_map member functions, these same names (Key, T, Hash, Pred and Alloc) are assumed for the template parameters.

Iterators to elements of unordered_map containers access to both the key and the mapped value. For this, the class defines what is called its value_type, which is a pair class with its first value corresponding to the const version of the key type (template parameter Key) and its second value corresponding to the mapped value (template parameter T):

typedef pair<const Key, T> value_type;

Iterators of a unordered_map container point to elements of this value_type. Thus, for an iterator called it that points to an element of a map, its key and mapped value can be accessed respectively(分别) with:

unordered_map<Key,T>::iterator it;
(*it).first; // the key value (of type Key)
(*it).second; // the mapped value (of type T)
(*it); // the "element value" (of type pair<const Key,T>)

Naturally, any other direct access operator, such as -> or [] can be used, for example:

it->first;               // same as (*it).first   (the key value)
it->second; // same as (*it).second (the mapped value)

Member types

The following aliases are member types of unordered_map. They are widely used as parameter and return types by member functions:

member type definition notes
key_type the first template parameter (Key)
mapped_type the second template parameter (T)
value_type pair<const key_type,mapped_type>
hasher the third template parameter (Hash) defaults to: hash<key_type>
key_equal the fourth template parameter (Pred) defaults to: equal_to<key_type>
allocator_type the fifth template parameter (Alloc) defaults to: allocator<value_type>
reference Alloc::reference
const_reference Alloc::const_reference
pointer Alloc::pointer for the default allocator: value_type*
const_pointer Alloc::const_pointer for the default allocator: const value_type*
iterator a forward iterator to value_type
const_iterator a forward iterator to const value_type
local_iterator a forward iterator to value_type
const_local_iterator a forward iterator to const value_type
size_type an unsigned integral type usually the same as size_t
difference_type a signed integral type usually the same as ptrdiff_t

Member functions

  • (constructor) Construct unordered_map (public member function )
  • (destructor) Destroy unordered map (public member function)
  • operator= Assign content (public member function )

Capacity

  • empty Test whether container is empty (public member function)
  • size Return container size (public member function)
  • max_size Return maximum size (public member function)

Iterators

  • begin Return iterator to beginning (public member function)
  • end Return iterator to end (public member function)
  • cbegin Return const_iterator to beginning (public member function)
  • cend Return const_iterator to end (public member function)

Element access

  • operator[] Access element (public member function )
  • at Access element (public member function)

Element lookup

  • find Get iterator to element (public member function)
  • count Count elements with a specific key (public member function )
  • equal_range Get range of elements with specific key (public member function)

Modifiers

  • emplace Construct and insert element (public member function )
  • emplace_hint Construct and insert element with hint (public member function )
  • insert Insert elements (public member function )
  • erase Erase elements (public member function )
  • clear Clear content (public member function )
  • swap Swap content (public member function)

Buckets

  • bucket_count Return number of buckets (public member function)
  • max_bucket_count Return maximum number of buckets (public member function)
  • bucket_size Return bucket size (public member type)
  • bucket Locate element's bucket (public member function)

Hash policy

  • load_factor Return load factor (public member function)
  • max_load_factor Get or set maximum load factor (public member function )
  • rehash Set number of buckets (public member function )
  • reserve Request a capacity change (public member function)

Observers

  • hash_function Get hash function (public member type)
  • key_eq Get key equivalence predicate (public member type)
  • get_allocator Get allocator (public member function)

Non-member function overloads

  • operators (unordered_map) Relational operators for unordered_map (function template )
  • swap (unordered_map) Exchanges contents of two unordered_map containers (function template )

Code Example

#include <iostream>
#include <string>
#include <unordered_map> using namespace std; typedef unordered_map<string,string> stringmap;
typedef unordered_map<int,int> intmap; stringmap merge(stringmap a,stringmap b){
stringmap tmp(a);
tmp.insert(b.begin(),b.end());
return tmp;
} int main(int argc, char **argv)
{
stringmap first1;
stringmap first2( { {"apple","red"}, {"lemon","yellow"} } );
stringmap first3( { {"orange","orange"}, {"strawberry","red"} } );
stringmap first4( first2 );
stringmap first5( merge(first2, first3) );
stringmap first6( first5.begin(), first5.end() ); cout << "string map first6 :\n";
for( auto& x:first6 )
cout << x.first << ":" << x.second << "\n"; stringmap second = { {"house","maison"}, {"apple","pomme"}, {"tree","arbre"},
{"book","liver"}, {"door","porte"}, {"grapefruit","pamplemouse"} }; unsigned n = second.bucket_count();
cout << "\nsecond map has " << n << " buckets\n";
for( unsigned i=0; i < n; i++ ){
cout << "bucket#" << i << "contains: "<< second.bucket_size(i) << "elements: ";
for( auto it = second.begin(i); it != second.end(i); it++ ){
cout << it->first << ":" << it->second << ",";
}
cout << "\n";
} cout << "\n";
for( auto& x:second){
cout << "Element [" << x.first << ":" << x.second << "]";
cout << " is in bucket #" << second.bucket( x.first ) << "\n";
} intmap third; cout << "size: " << third.size() << "\n";
cout << "bucket_count: " << third.bucket_count() << "\n";
cout << "load_factor: " << third.load_factor() << "\n";
cout << "max_load_factor: "<< third.max_load_factor() << "\n"; /**
* Sets the number of buckets in the container to n or more.
If n is greater than the current number of buckets in the container (bucket_count), a rehash is forced. The new bucket count can either be equal or greater than n.
If n is lower than the current number of buckets in the container (bucket_count), the function may have no effect on the bucket count and may not force a rehash.
*/ third.rehash(40);
cout << "rehash bucket count: "<< third.bucket_count() << "\n"; intmap::hasher fn = third.hash_function();
cout << "int hash function: 10:" << fn(10) << "\n";
cout << "int hash function: 11:" << fn(11) << "\n"; return 0;
}

Reference

cplusplus


C++ std::unordered_map的更多相关文章

  1. C++ std::unordered_map使用std::string和char *作key对比

    最近在给自己的服务器框架加上统计信息,其中一项就是统计创建的对象数,以及当前还存在的对象数,那么自然以对象名字作key.但写着写着,忽然纠结是用std::string还是const char *作ke ...

  2. C++11中std::unordered_map的使用

    unordered map is an associative container that contains key-value pairs with unique keys. Search, in ...

  3. hashmap C++实现分析及std::unordered_map拓展

    今天想到哈希函数,好像解决冲突的只了解了一种链地址法而且也很模糊,就查了些资料复习一下 1.哈希Hash 就是把任意长度的输入,通过哈希算法,变换成固定长度的输出(通常是整型),该输出就是哈希值. 这 ...

  4. 记一个关于std::unordered_map并发访问的BUG

    前言 刷题刷得头疼,水篇blog.这个BUG是我大约一个月前,在做15445实现lock_manager的时候遇到的一个很恶劣但很愚蠢的BUG,排查 + 摸鱼大概花了我三天的时间,根本原因是我在使用s ...

  5. std::unordered_map

    map与unordered_map的区别 1.map: map内部实现了一个红黑树,该结构具有自动排序的功能,因此map内部的所有元素都是有序的,红黑树的每一个节点都代表着map的一个元素, 因此,对 ...

  6. std::unordered_map与std::map

    前者查找更快.后者自动排序,并可指定排序方式. 资料参考: https://blog.csdn.net/photon222/article/details/102947597

  7. STL: unordered_map 自定义键值使用

    使用Windows下 RECT 类型做unordered_map 键值 1. Hash 函数 计算自定义类型的hash值. struct hash_RECT { size_t operator()(c ...

  8. C++11 新特性: unordered_map 与 map 的对比

    unordered_map和map类似,都是存储的key-value的值,可以通过key快速索引到value.不同的是unordered_map不会根据key的大小进行排序, 存储时是根据key的ha ...

  9. map 与 unordered_map

    两者效率对比: #include <iostream> #include <string> #include <map> #include <unordere ...

随机推荐

  1. Java 设计模式之建造者模式(四)

    原文地址:Java 设计模式之建造者模式(四) 博客地址:http://www.extlight.com 一.前言 今天继续介绍 Java 设计模式中的创建型模式--建造者模式.上篇设计模式的主题为 ...

  2. python中高阶函数学习笔记

    什么是高阶函数 变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数 def fun(x, y, f): print f(x), f(y) fun ...

  3. Makefile编写 五 隐含规则

    隐含规则———— 在我们使用Makefile时,有一些我们会经常使用,而且使用频率非常高的东西,比如,我们编译C/C++的源程序为中间目标文件(Unix下是[.o]文件,Windows下是[.obj] ...

  4. laravel路由定义

    参考http://www.ruchee.com/notes/fms/laravel_primer.html 路由 路由定义位置在 app/routes.php 文件,支持五种路由方法,采用回调函数的形 ...

  5. golang的interface到其他类型的数据转换

    以string为例 package main import "fmt" func main() { var a interface{} var b string a = " ...

  6. python的可变数据类型和不可变类型

    python里面一切皆对象 ython的每个对象都分为可变类型和不可变类型 整形,浮点型,字符串,元组属于不可变类型,列表,字典是可变类型 不可变数据类型 对不可变类型的变量重新赋值,实际上是重新创建 ...

  7. SpringMVC传统风格控制器和基于注解的控制器

    SpringMVC的DispatcherServlet 之前说过springMVC是使用Servlet作为控制器,就是这个用于调度的DispatcherServlet了.这个是servlet,可以根据 ...

  8. 字体相关CSS属性介绍

    font-family 字体系列. font-family可以把多个字体名称作为一个“回退”系统来保存.如果浏览器不支持第一个字体,则会尝试下一个.浏览器会使用它可识别的第一个值. 简单实例: bod ...

  9. Flask之模板之宏、继承、包含

    3.5 宏.继承.包含 类似于python中的函数,宏的作用就是在模板中重复利用代码,避免代码冗余. Jinja2支持宏,还可以导入宏,需要在多处重复使用的模板代码片段可以写入单独的文件,再包含在所有 ...

  10. Rhel5.5配置Centos yum源

    ruiy哥,抛砖引玉 当你使用rhel系统时,[大部分数据库中心及政府企业选择linux服务器时通常考虑采购的版本一般不外乎是Rhel红帽及Suse,理由你懂的EcoSystem!]你没有一个红帽网络 ...