目录

1 问题描述

2 解决方案

 


1 问题描述

Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
 
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 
Sample Input
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
 
Sample Output
1
0

2 解决方案

具体代码如下:

package com.liuzhen.practice;

import java.util.ArrayList;
import java.util.Scanner; public class Main {
public static int MAX = 1000;
public static int[][] map = new int[MAX][MAX]; //输入图
public static ArrayList<Integer> result = new ArrayList<Integer>(); //用于存放最终输出结果 //判断给定图的每个顶点的度是否均为偶数
public boolean judge(int[] degree) {
for(int i = 0;i < degree.length;i++) {
if(degree[i] % 2 != 0)
return false;
}
return true;
} //使用BFS遍历,判断给定图是否为连通图
public boolean bfs(int n) {
boolean[] used = new boolean[n];
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(0);
used[0] = true;
while(!list.isEmpty()) {
int temp = list.get(0);
list.remove(0);
for(int i = 0;i < n;i++) {
if(!used[i] && map[temp][i] != 0) {
used[i] = true;
list.add(i);
}
}
}
for(int i = 0;i < n;i++) {
if(used[i] == false)
return false;
}
return true;
} public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
while(true) {
int n = in.nextInt(); //输入图的顶点数
if(n == 0)
break;
int m = in.nextInt(); //输入图的边数目
int[] degree = new int[n]; //用于计算输入图的每个顶点的度
for(int i = 0;i < m;i++) {
int a = in.nextInt();
int b = in.nextInt();
map[a - 1][b - 1] = 1;
map[b - 1][a - 1] = 1;
degree[a - 1]++;
degree[b - 1]++;
}
if(test.judge(degree) && test.bfs(n))
result.add(1);
else
result.add(0);
}
for(int i = 0;i < result.size();i++)
System.out.println(result.get(i));
}
}

运行结果:

3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
1
0

参考资料:

1. 欧拉回路

算法笔记_141:无向图的欧拉回路判断问题(Java)的更多相关文章

  1. 算法笔记_142:无向图的欧拉回路求解(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 John's trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8 ...

  2. 算法笔记_147:有向图欧拉回路判断应用(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 Description In order to make their sons brave, Jiajia and Wind take them t ...

  3. Java实现无向图的欧拉回路判断问题

    1 问题描述 Problem Description 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路? Input 测试输入包含若干测试 ...

  4. 算法笔记_044:表达式计算求值(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 输入一个只包含加减乖除和括号的合法表达式,求表达式的值.其中除表示整除. 输入格式 输入一行,包含一个表达式. 输出格式 输出这个表达式的 ...

  5. 算法笔记_052:蓝桥杯练习Multithreading(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 现有如下一个算法: repeat ni times yi := y y := yi+1 end repeat 令n[1]为你需要算加法的第 ...

  6. 算法笔记_180:历届试题 国王的烦恼(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 C国由n个小岛组成,为了方便小岛之间联络,C国在小岛间建立了m座大桥,每座大桥连接两座小岛.两个小岛间可能存在多座桥连接.然而,由于海水冲 ...

  7. 算法笔记_149:图论之桥的应用(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 1310 One-way traffic In a certain town there are n intersections connected ...

  8. 算法笔记_139:二分图的最大权匹配(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 何为二分图的最大权匹配问题? 最大权二分匹配问题就是给二分图的每条边一个权值,选择若干不相交的边,得到的总权值最大. 2 解决方案 对于此问题的讲解 ...

  9. 算法笔记_133:最大连续乘积子数组(Java)

    目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 动态规划法   1 问题描述 给定一个浮点数组,任意取出数组中的若干个连续的数相乘,请找出其中乘积最大的子数组. 2 解决方案 2.1 蛮力法 ...

随机推荐

  1. Opencv学习笔记3:边缘检测算子的实现方法

    一.边缘检测概念 图像的边缘检测的原理是检测出图像中所有灰度值变化较大的点,而且这些点连接起来就构成了若干线条,这些线条就可以称为图像的边缘.效果如图: 接下来介绍一下边缘提取的几种算子,具体证明过程 ...

  2. POJ1716 贪心

    题目大意:在[0,10000]上给出n个区间,要求在区间选整数点,每个区间至少包含两个点,问至少要几个点.题目保证有解决方案. 题目分析: 我们做过在区间上至少包含一个点的题目.类似的方法,我们先排序 ...

  3. centos 7 修改ssh登录端口

    在阿里云上面使用的oneinstack镜像,默认是使用的22端口,每次登录总会发现有人在暴力破解我的服务器,所以想想还是修改一下比较安全. 1.在防火墙打开新的端口 iptables -I INPUT ...

  4. Java(静态)变量和(静态)代码块的执行顺序

    本文讨论Java中(静态)变量.(静态)代码块的执行顺序 首先创建3个类: 1.Foo类,用于打印变量 public class Foo { public Foo(String word) { Sys ...

  5. 用C++/CLI搭建C++和C#之间的桥梁(一)—— 简介

    C#和C++是非常相似的两种语言,然而我们却常常将其用于两种不同的地方,C#得益于其简洁的语法和丰富的类库,常用来构建业务系统.C++则具有底层API的访问能力和拔尖的执行效率,往往用于访问底层模块和 ...

  6. Use a microcontroller to design a boost converter

    Boost converters, like other switchers, have traditionally received their control signals from a ded ...

  7. Open Source Universal 48 pin programmer design

    http://www.edaboard.com/thread227388.html Hi, i have designed a 48 pin universal programmer but need ...

  8. Fiddler2 抓取手机APP数据包

    原文:http://blog.goyiyo.com/archives/2044 下载安装运行后,查出运行机器的IP,手机连接同一网域内的WIFI,手机WIFI连接设置里的高级里,代理设置填写上Fidd ...

  9. 常用的基本控件 android常用控件

    1.TextView:(文本框):不能编辑    android:textColor="@color/tv_show_color" 字体颜色    android:textSize ...

  10. UML建模工具Visio 、Rational Rose、PowerDesign的比较

    UML建模工具Visio .Rational Rose.PowerDesign的比较   ROSE是直接从UML发展而诞生的设计工具,它的出现就是为了对UML建模的支持,ROSE一开始没有对数据库端建 ...