1007 正整数分组

  1. 1 秒
  2. 131,072 KB
  3. 10 分
  4. 2 级题
 
将一堆正整数分为2组,要求2组的和相差最小。
例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的。
 
 

输入

第1行:一个数N,N为正整数的数量。
第2 - N+1行,N个正整数。
(N <= 100, 所有正整数的和 <= 10000)

输出

输出这个最小差

输入样例

5
1
2
3
4
5

输出样例

1
变形的01背包;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 20005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int a[maxn];
int sum;
int dp[100002];
int t[200], v[200]; int main()
{
// ios::sync_with_stdio(0);
n = rd();
for (int i = 1; i <= n; i++) {
a[i] = rd(); //sum[i] = sum[i - 1] + a[i];
sum += a[i];
t[i] = v[i] = a[i];
}
int minn = inf;
int V = sum / 2;
for (int i = 1; i <= n; i++) {
for (int j = V; j >= t[i]; j--) {
dp[j] = max(dp[j], dp[j - t[i]] + v[i]);
}
}
cout << abs(dp[V] - (sum - dp[V])) << endl;
return 0;
}

51 Nod 1007 dp的更多相关文章

  1. 51 Nod 1007 正整数分组【类01背包】

    1007 正整数分组 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组, ...

  2. 51 nod 1007 正整数分组 (简单01背包) && csu 1547: Rectangle

    http://www.51nod.com/onlineJudge/questionCode.html#problemId=1007&noticeId=15020 求出n个数的和sum,然后用s ...

  3. 51 Nod 1050 dp

    1050 循环数组最大子段和 1 秒 131,072 KB 10 分 2 级题   N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连 ...

  4. 51 nod 1055 最长等差数列(dp)

    1055 最长等差数列 基准时间限制:2 秒 空间限制:262144 KB 分值: 80 难度:5级算法题 N个不同的正整数,找出由这些数组成的最长的等差数列.     例如:1 3 5 6 8 9 ...

  5. 51 nod 1610 路径计数(Moblus+dp)

    1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一 ...

  6. 51 nod 1766 树上的最远点对(线段树+lca)

    1766 树上的最远点对 基准时间限制:3 秒 空间限制:524288 KB 分值: 80 难度:5级算法题   n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间,表示点的标号请你求出两个 ...

  7. 51 nod 1439 互质对(Moblus容斥)

    1439 互质对 题目来源: CodeForces 基准时间限制:2 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有n个数字,a[1],a[2],…,a[n].有一个集合,刚开 ...

  8. 51 nod 1495 中国好区间

    1495 中国好区间 基准时间限制:0.7 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   阿尔法在玩一个游戏,阿尔法给出了一个长度为n的序列,他认为,一段好的区间,它的长度是& ...

  9. 51 nod 1427 文明 (并查集 + 树的直径)

    1427 文明 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题   安德鲁在玩一个叫“文明”的游戏.大妈正在帮助他. 这个游 ...

随机推荐

  1. Powerdesigner逆向工程从mysql生成PDM

    大家喜欢用powerDesigner进行数据库建模.通常都是先设计出物理模型图,再转换出数据库需要的SQL语句,从而生成数据库.但“powerDesigner逆向工程”就能将数据库逆向转为物理模型图. ...

  2. 一步步来用C语言来写python扩展-乾颐堂

    本文介绍如何用 C 语言来扩展 python.所举的例子是,为 python 添加一个设置字符串到 windows 的剪切板(Clipboard)的功能.我在写以下代码的时候用到的环境是:window ...

  3. es学习-基础增删改查

    创建库 插入数据 修改文档: 查询文档: 删除文档:

  4. 手动安装Chrome截屏控件扩展-Xproer.ScreenCapture(ScreenCapture.crx)

    1.打开扩展面板,在地址栏中输入 chrome://extensions   或通过"扩展程序"菜单打开   2.将ScreenCapture.crx拖拽到此面板中   3.选择添 ...

  5. 六)iframe 及父子页面之间获取元素、方法调用

    http://www.w3school.com.cn/tags/tag_iframe.asp father.html <!DOCTYPE html> <html> <he ...

  6. Linux ps 进程状态码

    D            不可中断睡眠(通常进程在进行I/O) R            运行中或者可运行状态(在运行队列中) S            可中断睡眠(等待event,进程idle中) ...

  7. OpenCV实现pHash哈希

    离散余弦变换(DCT,Discrete Cosine Transform)是与傅里叶变换相关的一种变换,它类似于离散傅里叶变换(DFT,Discrete Fourier Transform),但是只使 ...

  8. win32 zbar

    一.zbar官方介绍 ZBar 是款桌面电脑用条形码/二维码扫描工具,支持摄像头及图片扫描,支持多平台,例如 iPhone,Andriod 手机,同时 ZBar封装了二维码扫描的 API 开发包. Z ...

  9. 【Linux】Linux各文件夹说明

    转载 /bin/ — 用来贮存普通命令. /sbin/ — 许多系统命令(例如 shutdown)的贮存位置.属于基本的系统命令,如shutdown,reboot,用于启动系统,修复系统./sbin目 ...

  10. 洛谷P1501 [国家集训队]Tree II(打标记lct)

    题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...