题意:求一个序列中,有多少三元组$(i,j,k)i<j<k $ 满足\(A_i + A_k = 2*A_i\) 构成等差数列。

https://www.cnblogs.com/xiuwenli/p/9719425.html

在该题的基础上加了i<j<k的限制。不能单纯地FFT枚举结果。

考虑分块搭配FFT结果问题。

将原序列分成若干块,设每个块的大小为\(B\)。则构成等差数列的三元组有三种构成情况。

1)三个数都在一个块内。这种情况对每个块独立处理。二重循环枚举\(A_i 、A_k\),不断更新(i,k)之间满足条件的\(A_j\);

2)两个数在一个块内。那么有两种可能:\(A_i、A_j\)在一个块内,或\(A_j、A_k\)在一个块内。此时需要之前所有块的信息和后面所有块的信息。

3)三个数在不同块中。此时情况和不带限制的相似。统计出之前所有块的信息和之后所有块的信息,FFT计算出和的系数,扫一遍块内数据统计结果。

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e5 + 10;
const double PI = acos(-1.0);
struct Complex{
double x, y;
inline Complex operator+(const Complex b) const {
return (Complex){x +b.x,y + b.y};
}
inline Complex operator-(const Complex b) const {
return (Complex){x -b.x,y - b.y};
}
inline Complex operator*(const Complex b) const {
return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
}
} va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
int lenth = 1, rev[MAXN * 2 + MAXN / 2];
int N, M; // f 和 g 的数量
//f g和 的系数
// 卷积结果
// 大数乘积
int f[MAXN],g[MAXN];
vector<LL> conv;
vector<LL> multi;
void debug(){for(int i=0;i<conv.size();++i) cout<<conv[i]<<" ";cout<<endl;}
//f g
void init()
{
int tim = 0;
lenth = 1;
conv.clear(), multi.clear();
memset(va, 0, sizeof va);
memset(vb, 0, sizeof vb);
while (lenth <= N + M - 2)
lenth <<= 1, tim++;
for (int i = 0; i < lenth; i++)
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
}
void FFT(Complex *A, const int fla)
{
for (int i = 0; i < lenth; i++){
if (i < rev[i]){
swap(A[i], A[rev[i]]);
}
}
for (int i = 1; i < lenth; i <<= 1){
const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
for (int j = 0; j < lenth; j += (i << 1)){
Complex K = (Complex){1, 0};
for (int k = 0; k < i; k++, K = K * w){
const Complex x = A[j + k], y = K * A[j + k + i];
A[j + k] = x + y;
A[j + k + i] = x - y;
}
}
}
}
void getConv(){ //求多项式
init();
for (int i = 0; i < N; i++)
va[i].x = f[i];
for (int i = 0; i < M; i++)
vb[i].x = g[i];
FFT(va, 1), FFT(vb, 1);
for (int i = 0; i < lenth; i++)
va[i] = va[i] * vb[i];
FFT(va, -1);
for (int i = 0; i <= N + M - 2; i++)
conv.push_back((LL)(va[i].x / lenth + 0.5));
} int a[MAXN];
int cnt[30005];
int cnt2[30005]; int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int n;
while(scanf("%d",&n)==1){
memset(cnt,0,sizeof(cnt));
for(int i=0;i<n;++i){
scanf("%d",&a[i]);
}
int block=(int)(sqrt(n)+1e-6)*5;
LL res=0;
//1) 三个数都在一个块内
for(int b=0;b<n;b+=block){
for(int i=0; i<block && b+i<n;++i){
for(int j=i+1;j<block && b+j<n;++j){
int sum = a[b+i] + a[b+j];
if((sum&1)==0){
res += cnt[sum>>1];
}
++cnt[a[b+j]];
}
for(int j=i+1;j<block && b+j<n ;++j)
--cnt[a[b+j]];
}
} //2) 两个数在一个块内
memset(cnt,0,sizeof(cnt)); //后面所有块的信息
memset(cnt2,0,sizeof(cnt2)); //前面所有块的信息
for(int i=0;i<n;++i){
cnt[a[i]]++;
}
for(int b = 0;b<n;b+=block){
for(int i=0;i<block && b+i<n;++i){ //将该块的数据抹去
cnt[a[b+i]]--;
}
for(int i=0;i<block && b+i<n;++i){
for(int j=i+1;j<block && b+j<n;++j){
int cha = 2*a[b+i] - a[b+j];
if(cha>0 && cha<=30000) res += cnt2[cha];
int sum = 2*a[b+j] - a[b+i];
if(sum>0 && sum<=30000) res += cnt[sum];
}
}
for(int i=0;i<block && b+i<n;++i){ //将该块的数据更新到 cnt2
++cnt2[a[b+i]];
}
}
// 3) 三个数在不同块中
memset(cnt,0,sizeof(cnt)); //后面所有块的信息
memset(cnt2,0,sizeof(cnt2)); //前面所有块的信息
for(int i=0;i<n;++i){
cnt[a[i]]++;
}
for(int b = 0;b<n;b+=block){
for(int i=0;i<block && b+i<n;++i){ //将该块的数据抹去
cnt[a[b+i]]--;
}
if(b>1){
N =M = 30001;
for(int i=0;i<=30000;++i){
f[i] = cnt[i];
g[i] = cnt2[i];
}
getConv();
int sz = conv.size();
for(int i=0;i<block &&b+i<n;++i){
if(a[b+i]*2>=sz) continue;
res += conv[a[b+i]*2];
}
}
for(int i=0;i<block && b+i<n;++i){ //将该块的数据更新到 cnt2
++cnt2[a[b+i]];
}
}
printf("%lld\n",res);
}
return 0;
}

CodeChef - COUNTARI Arithmetic Progressions (FFT)的更多相关文章

  1. CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)

    题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...

  2. CC Arithmetic Progressions (FFT + 分块处理)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题目:给出n个数,选出三个数,按下标顺序形成等差数 ...

  3. BZOJ3509 [CodeChef] COUNTARI 【分块 + fft】

    题目链接 BZOJ3509 题解 化一下式子,就是 \[2A[j] = A[i] + A[k]\] 所以我们对一个位置两边的数构成的生成函数相乘即可 但是由于这样做是\(O(n^2logn)\)的,我 ...

  4. [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)

    [BZOJ 3509] [CodeChef] COUNTARI (FFT+分块) 题面 给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_ ...

  5. BZOJ3509: [CodeChef] COUNTARI

    3509: [CodeChef] COUNTARI Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 339  Solved: 85[Submit][St ...

  6. bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]

    3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...

  7. BZOJ 3509: [CodeChef] COUNTARI

    3509: [CodeChef] COUNTARI Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 883  Solved: 250[Submit][S ...

  8. CodeChef - COUNTARI FTT+分块

    Arithmetic Progressions Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can ch ...

  9. [Educational Codeforces Round 16]D. Two Arithmetic Progressions

    [Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...

随机推荐

  1. leetcode -- Permutations II TODO

    Given a collection of numbers that might contain duplicates, return all possible unique permutations ...

  2. m2014-software->Word2010发布博客文章至Cnblogs

    转自:http://www.cnblogs.com/xfiver/archive/2011/12/26/2301591.html 昨夜喝醉,今天早起梳理情绪,看下如何使用word2010直接写cnbl ...

  3. 【iOS开发】 AudioSession设置, 切换扬声器和听筒详解-保留其他应用音乐(备忘)

    本文转载至 http://blog.sina.com.cn/s/blog_693de6100101f1g8.html (2013-04-10 17:25:24) 转载▼ 标签: audiosessio ...

  4. sql语法:从一个表update到另外一个表

    sql语法:从一个表update到另外一个表 一. update a set a.name=b.name1 from a,b where a.id=b.id 二. update table1 set ...

  5. java基础---->final关键字的使用

    这里介绍一些java基础关于final的使用,文字说明部分摘自java语言规范.心甘情愿这四个字,透着一股卑微,但也有藏不住的勇敢. Final关键字的说明 一.关于final变量规范说明 .A fi ...

  6. 【BZOJ1495】[NOI2006]网络收费 暴力+DP

    [BZOJ1495][NOI2006]网络收费 Description 网络已经成为当今世界不可或缺的一部分.每天都有数以亿计的人使用网络进行学习.科研.娱乐等活动.然而,不可忽视的一点就是网络本身有 ...

  7. [LeetCode] Maximum Subarray Sum

    Dynamic Programming There is a nice introduction to the DP algorithm in this Wikipedia article. The ...

  8. SaltStack概述及安装

    配置管理工具 查看文档 https://docs.saltstack.com/en/latest/ 其他工具 puppet puppet是一种Linux.Unix.windows平台的集中配置管理系统 ...

  9. vim学习选取多行(转)

    在可视化模式下,可以对一个文本块的整体进行操作.例如,首先高亮选中一部分文本,然后用d命令删除这个文本块.可视化模式的好处在于,你可以在做改动之前,就看到操作将影响的文本.可视化模式可以分为以下三种: ...

  10. Mongodb系列文章

    http://blog.csdn.net/congcong68 学习MongoDB 六: MongoDB查询(游标操作.游标信息)(三) Mongodb官方C#驱动示例 MongoDB Driver ...