4455: [Zjoi2016]小星星

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 426  Solved: 255

Description

小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品。她有n颗小星星,用m条彩色的细线串了起来,每条细
线连着两颗小星星。有一天她发现,她的饰品被破坏了,很多细线都被拆掉了。这个饰品只剩下了n?1条细线,但
通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树。小Y找到了这个饰品的设
计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星。如果现在饰品中两颗小星星有细线相连,
那么要求对应的小星星原来的图纸上也有细线相连。小Y想知道有多少种可能的对应方式。只有你告诉了她正确的
答案,她才会把小饰品做为礼物送给你呢。

Input

第一行包含个2正整数n,m,表示原来的饰品中小星星的个数和细线的条数。
接下来m行,每行包含2个正整数u,v,表示原来的饰品中小星星u和v通过细线连了起来。
这里的小星星从1开始标号。保证u≠v,且每对小星星之间最多只有一条细线相连。
接下来n-1行,每行包含个2正整数u,v,表示现在的饰品中小星星u和v通过细线连了起来。
保证这些小星星通过细线可以串在一起。
n<=17,m<=n*(n-1)/2

Output

输出共1行,包含一个整数表示可能的对应方式的数量。
如果不存在可行的对应方式则输出0。

Sample Input

4 3
1 2
1 3
1 4
4 1
4 2
4 3

Sample Output

6

HINT

Source

 
【分析】
  很久之前的比赛的一题。【好题啊但是我为什么没有写题解?
  先不考虑每个点一一对应的话,对应关系正确当且仅当树上有的边,对应到原来的无向图上的边也有。
  f[x][i]表示x这个点对应i这个点的情况下,x这棵子树的对应关系正确的方案数。
  这个树形DP即可,n^3。
  但是要保证一一对应,那么可能有一些点没有被对应,所以用容斥。
  枚举没有对应的点,若为奇则减,为偶则加。
  【记得好像不用边目录会T?
  【好像这种“恰好”或者“一一对应”的题目都很经常用容斥,你不能保证要保证的东西,容斥一下就会变得简单
 
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF 0xfffffff
#define Maxn 20
#define LL long long bool c[Maxn][Maxn];
int fa[Maxn],first[Maxn]; int n,m; struct node
{
int x,y,next;
}t[*Maxn];int len; void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
} void dfs(int x,int f)
{
fa[x]=f;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=f)
{
dfs(t[i].y,x);
}
} LL f[Maxn][Maxn]; void get_f(int x,int s)
{
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa[x])
{
get_f(t[i].y,s);
}
for(int i=;i<=n;i++) if(((<<i-)&s)==)
{
f[x][i]=;
for(int j=first[x];j;j=t[j].next) if(t[j].y!=fa[x])
{
LL now=;
int y=t[j].y;
for(int k=;k<=n;k++) if(c[i][k])
{
now+=f[y][k];
}
f[x][i]*=now;
}
}
else f[x][i]=;
} int main()
{
memset(c,,sizeof(c));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
c[x][y]=c[y][x]=;
}
memset(first,,sizeof(first));
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
ins(x,y);ins(y,x);
}
dfs(,);
int mx=(<<n)-;
LL ans=;
for(int i=;i<=mx;i++)
{
// memset(f,0,sizeof(f));
get_f(,i);
int h=,now=i;
LL sum=;
while(now)
{
if(now&) h++;
now/=;
}
for(int j=;j<=n;j++) sum+=f[][j];
if(h%==) ans+=sum;
else ans-=sum;
}
// memset(f,0,sizeof(f));
get_f(,);
for(int j=;j<=n;j++) ans+=f[][j];
printf("%lld\n",ans);
return ;
}

2017-04-20 17:23:11

【BZOJ 4455】 4455: [Zjoi2016]小星星 (容斥原理+树形DP)的更多相关文章

  1. BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]

    4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...

  2. bzoj4455 & loj2091 [Zjoi2016]小星星 容斥原理+树形DP(+状压DP?)

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4455 https://loj.ac/problem/2091 题解 很不错的一道题.(不过在当 ...

  3. 4455[Zjoi2016]小星星 容斥+dp

    4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 527  Solved: 317[Submit][Status] ...

  4. BZOJ4455 ZJOI2016小星星(容斥原理+树形dp)

    相当于给树上的每个点分配一个编号使父亲和儿子间都有连边. 于是可以考虑树形dp:设f[i][j][k]为i号点的编号为j,其子树中编号集合为k的方案数.转移显然.然而复杂度3n·n3左右,具体我也不知 ...

  5. BZOJ.3227.[SDOI2008]红黑树tree(树形DP 思路)

    BZOJ orz MilkyWay天天做sxt! 首先可以树形DP:\(f[i][j][0/1]\)表示\(i\)个点的子树中,黑高度为\(j\),根节点为红/黑节点的最小红节点数(最大同理). 转移 ...

  6. BZOJ.2286.[SDOI2011]消耗战(虚树 树形DP)

    题目链接 BZOJ 洛谷P2495 树形DP,对于每棵子树要么逐个删除其中要删除的边,要么直接断连向父节点的边. 如果当前点需要删除,那么直接断不需要再管子树. 复杂度O(m*n). 对于两个要删除的 ...

  7. bzoj 1060 [ZJOI2007]时态同步(树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1060 [题意] 求最少的增加量,使得以rt为根的树中由一个结点出发的所有到叶子结点的路 ...

  8. BZOJ 1509: [NOI2003]逃学的小孩( 树形dp )

    树形dp求出某个点的最长3条链a,b,c(a>=b>=c), 然后以这个点为交点的最优解一定是a+2b+c.好像还有一种做法是求出树的直径然后乱搞... ----------------- ...

  9. BZOJ.3238.[AHOI2013]差异(后缀自动机 树形DP/后缀数组 单调栈)

    题目链接 \(Description\) \(Solution\) len(Ti)+len(Tj)可以直接算出来,每个小于n的长度会被计算n-1次. \[\sum_{i=1}^n\sum_{j=i+1 ...

随机推荐

  1. spring boot 使用logback日志系统的详细说明

    springboot按照profile进行打印日志 log4j logback slf4j区别? 首先谈到日志,我们可能听过log4j logback slf4j这三个名词,那么它们之间的关系是怎么样 ...

  2. Cloudera 安装

    参考网址: http://tcxiang.iteye.com/blog/2087597 http://archive.cloudera.com/cdh5/ http://archive.clouder ...

  3. sylk文件

    症状:excel表出现提示:sylk文件...导致excel表不可读取 原因:文件内容有“ ID ” 字段,估计是固定的识别“ID”或“ID_XXXX” 修改方法:将ID中的任意字母换成小写即可 转载 ...

  4. 一文掌握关于Java数据结构所有知识点(欢迎一起完善)

    在我们学习Java的时候,很多人会面临我不知道继续学什么或者面试会问什么的尴尬情况(我本人之前就很迷茫).所以,我决定通过这个开源平台来帮助一些有需要的人,通过下面的内容,你会掌握系统的Java学习以 ...

  5. 64_s2

    sipwitch-1.9.15-3.fc26.x86_64.rpm 13-Feb-2017 09:19 162822 sipwitch-cgi-1.9.15-3.fc26.x86_64.rpm 13- ...

  6. elasticsearch删除索引报错【原】

    如果elasticsearch删除索引报错 curl -X DELETE 'http://10.73.26.66:9200/httpd-34-2017.08.15' {"error" ...

  7. $FFT$(快速傅里叶变换)

    - 概念引入 - 点值表示 对于一个$n - 1$次多项式$A(x)$,可以通过确定$n$个点与值(即$x$和$y$)来表示这唯一的$A(x)$ - 复数 对于一元二次方程 $$x^2 + 1 = 0 ...

  8. 《深入理解Java虚拟机》笔记--第四章、虚拟机性能监控与故障处理工具

    主要学习并记录在命令行中操作服务器时使用的六大命令工具,可视化工具JConsole和VisualVM在开发过程中熟悉. 一.jps:虚拟机进程状况工具(JVM Process Status Tool) ...

  9. C# 怎么显示中文格式的日期、星期几

    //该语句显示的为英文格式DateTime.Now.DayOfWeek.ToString(); //显示中文格式星期几 "星期" + DateTime.Now.ToString(& ...

  10. scrapy使用PhantomJS和selenium爬取数据

    1.phantomjs 安装 下载:http://phantomjs.org/download.html 解压: tar -jxvf phantomjs--linux-x86_64.tar.bz2 重 ...