sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

医药统计项目联系:QQ :231469242

https://wenku.baidu.com/view/8d506a9cda38376baf1fae84.html

sensitivity 敏感性:患病且检测阳性概率

specificity特异性:健康且检测阴性概率

ppv(positive predict value)阳性预测值:指机器检查后,患病概率多高,这和疾病流行程度有关

npv(negative predict value)阴性预测值:指机器检查后,非患病概率多高,这和疾病流行程度有关

但现实中机器会把很多正常人也检查出阳性,所以没病的人也可能检查出阳性

所以阳性预测值和阴性预测值可以很好预测你检查结果后,患病概率

阳性还和疾病流行程度有关,疾病是罕见病,即使机器检测阳性,概率也不会很高

阳性预测率:当你被检查出阳性时,你想知道你真的患病概率。

阳性预测率=患病且检查出阳性数量/(患病且被诊断阳性数量+不患病且被诊断阳性数量)

阴性预测率:检查阴性时,健康概率

阴性预测率=不患病且检查出阴性数量/(患病且被诊断阴性数量+不患病且被诊断阴性数量)

案例中,总人口1000人(A+B+C+D),90%患病率,机器敏感度低50%,但阳性预测值高90%

如果疾病流行度很低,10%感染率,虽然敏感度50%,但阳性预测率只有10%

阴性时,用于排除疾病

用于前期筛选工具

敏感度和疾病流行程度无关

For example, pregnancy tests have a high sensitivity: when a woman is pregnant,
the probability that the test is positive is very high.
In contrast, an indicator for an attack with atomic weapons on the White House
should have a very high specificity: if there is no attack, the probability that the
indicator is positive should be very, very small.
While sensitivity and specificity characterize a test and are independent of
prevalence, they do not indicate what portion of patients with abnormal test results
are truly abnormal. This information is provided by the positive/negative predictive
value (PPV/NPV). These are the values relevant for a doctor diagnosing a patient:
when a patient has a positive test result, how likely is it that the patient is in fact sick?
Unfortunately, as Fig. 7.8 indicates, these values are affected by the prevalence of the
disease. The prevalence of a disease indicates how many out of 100,000 people are
affected by it; in contrast, the incidence gives the number of newly diagnosed cases
per 100,000 people. In summary, we need to know the prevalence of the disease as
well as the PPV/NPV of a test to provide a sensible interpretation of medical test
results.
Take for example a test where a positive test results implies a 50% chance
of having a certain medical condition. If half the population has this condition,
a positive test result tells the doctor nothing. But if the condition is very rare, a
positive test result indicates that the patient has a fifty–fifty chance of having this
rare condition—a piece of information that is very valuable.
Figure 7.8 shows how the prevalence of a disease affects the interpretation
of diagnostic results, with a test with a given specificity and sensitivity: a high
prevalence of the disease increases the PPV of the test, but decreases the NPV;
and a low prevalence does exactly the opposite. Figure 7.9 gives a worked example.

疾病流行率与阳性预测值关系密切

即使敏感度很高,但ppv也可能低,因为机器预测阳性错误的数量太多。所以敏感度也不是唯一判断金指标

阳/阴性预测值Positive/negative Predictive Value(推荐AA)的更多相关文章

  1. light oj 1294 - Positive Negative Sign

    1294 - Positive Negative Sign   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: ...

  2. 1294 - Positive Negative Sign(规律)

    1294 - Positive Negative Sign   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: ...

  3. 智课雅思短语---二、exert positive/ negative effects on…

    智课雅思短语---二.exert positive/ negative effects on… 一.总结 一句话总结:对…产生有利/不利的影响 1.the advantages far outweig ...

  4. 零宽断言 -- Lookahead/Lookahead Positive/Negative

    http://www.vaikan.com/regular-expression-to-match-string-not-containing-a-word/ 经常我们会遇到想找出不包含某个字符串的文 ...

  5. LightOJ - 1294 - Positive Negative Sign(规律)

    链接: https://vjudge.net/problem/LightOJ-1294 题意: Given two integers: n and m and n is divisible by 2m ...

  6. Amazon评论数据的预处理代码(Positive & Negative)

    Amazon评论数据的预处理代码,用于情感分析,代码改自 https://github.com/PaddlePaddle/Paddle/tree/develop/demo/quick_start/da ...

  7. Python/spss-多元回归建模-共线性诊断2(推荐AA)

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  8. ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)

      欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.ht ...

  9. 深层解析:构建facebook应用商店推荐引擎

    Under the Hood: Building the App Center recommendation engine   As more apps on Facebook Platform ha ...

随机推荐

  1. C++ Primer Plus学习:第十四章

    第十四章 C++中的代码重用 包含对象成员的类 将类的对象作为新类的成员.称为has-a关系.使用公有继承的时候,类可以继承接口,可能还有实现(纯虚函数不提供实现,只提供接口).使用包含时,可以获得实 ...

  2. 继承&构造函数

    子父类中的构造函数的特点. 在子类构造对象时,发现,访问子类构造函数时,父类也运行了. 为什么呢? 原因是:在子类的构造函数中第一行有一个默认的隐式语句. super(); 子类的实例化过程:子类中所 ...

  3. TCP系列43—拥塞控制—6、Congestion Window Validation(CWV)

    一.概述 在RFC2861中,区分了TCP连接数据传输的三种状态   After sending a data segment:       If tcpnow - T_last >= RTO ...

  4. Docker 技术 介绍

    https://github.com/docker/docker 实现用户空间隔离的技术:名称空间(NameSpace),CGroup(控制组) 什么是NameSpace::简单的理解就是,每一个虚拟 ...

  5. pro9笔记

  6. SpringCloud——服务网关

    1.背景 上篇博客<SpringCloud--Eureka服务注册和发现>中介绍了注册中心Eureka.服务提供者和服务消费者.这篇博客我们将介绍服务网关. 图(1) 未使用服务网关的做法 ...

  7. Snapseed玩出新高度,分分钟让你成p图大神! 转

    (,,・∀・)ノ゛嗨呀 小阔爱们! 不知道大家记不记得~ 上周我们的副条发了一篇: <看过他的照片,我才知道什么是创意摄影> 德国仅22岁超现实主义艺术家Justin Peters 创造了 ...

  8. 增加响应header让ajax支持跨域

    ajax请求数据步骤 发送请求--->浏览器接受响应--->判断是否是同域下 是的话,就把响应数据返回给ajax.不是的话就提醒禁止跨域请求. 现在可以在响应头重增加 header(&qu ...

  9. fsocket发送post实现异步请求

    function triggerRequest($url, $post_data = array(), $cookie = array()){ //可以通过POST或者GET传递一些参数给要触发的脚本 ...

  10. 选项卡控件(TabControl)的操作

    移除选项卡和删除不同:前者可以从控件中移除不需要的选项,后者可以删掉整个控件.