传送门

Description

给你n个点,每次可以从起点到最多两个点然后回到起点。求经过每个点最少一次的最短欧氏距离和是多少

Input

第一行是起点的坐标

第二行是点的个数\(n\)

下面\(n\)行是需要进过的点的坐标

Output

输出最短欧氏距离以及方案。方案是经过每个点的顺序。起点为\(0\)号点

Hint

\(For~All:\)

\(0~\leq~n~\leq~24\)

Solution

看到24就大概能想到是个状压DP

考虑做法

设\(f_S\)为走遍\(S\)中的点的ans。

转移任意枚举两个或一个点转移

然而这么做是\(O(4^n)\)的,GG

考虑事实上对于同一个状态,比如走过前3个点,第一次走1,2,第二次走3和第一次走3,第二次走1,2的答案是一样的。

于是对于一个集合,只任意选择集合中的一个元素,枚举他是怎么选的,就可以得到最优的答案。

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[300];
} template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {putchar('-');x=-x;}
rg int top=0;
do {
IO::buf[++top]=x%10+'0';
} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template <typename T>
inline void mswap(T &a,T &b) {
T _temp=a;a=b;b=_temp;
} const int maxn = 30;
const int maxt = 20000000; struct M {
int p,v;
};
//M list[maxt]; struct Pos {
int x,y;
};
Pos MU[maxn]; int sx,sy,n,tcnt;
int frog[maxt],pre[maxt],list[maxt]; void dfs(ci);
int cost(ci,ci);
int dist(ci,ci); int main() {
qr(sx);qr(sy);qr(n);int dn=n-1;
MU[n].x=sx;MU[n].y=sy;
for(rg int i=0;i<n;++i) {qr(MU[i].x);qr(MU[i].y);}
for(rg int i=0;i<dn;++i) {
for(rg int j=i+1;j<n;++j) {
int p=(1<<i)|(1<<j);
int v=cost(i,j);
list[p]=v;
}
}
for(rg int i=0;i<n;++i) {
int p=1<<i;int v=dist(n,i)<<1;list[p]=v;
}
int all=(1<<n)-1;
memset(frog,0x3f,sizeof frog);frog[0]=0;
for(rg int i=1;i<=all;++i) {
for(rg int j=0;j<n;++j) if(i&(1<<j)) {
for(rg int k=0;k<n;++k) if(i&(1<<k)) {
int p=(1<<j)|(1<<k);
if(frog[i] > (frog[i^p]+list[p])) frog[i]=frog[i^p]+list[p],pre[i]=p;
}
break;
}
}
qw(frog[all],'\n',true);
dfs(all);
return 0;
} inline int cost(ci a,ci b) {
return dist(n,a)+dist(a,b)+dist(b,n);
} inline int dist(ci a,ci b) {
return (MU[a].x-MU[b].x)*(MU[a].x-MU[b].x)+(MU[a].y-MU[b].y)*(MU[a].y-MU[b].y);
} void dfs(ci x) {
if(!x) {qw(0,' ',true);return;}
dfs(x^pre[x]);
for(rg int i=0;i<n;++i) if(pre[x]&(1<<i)) qw(i+1,' ',true);
qw(0,' ',true);
}

Summary

当多个状态的转移等价的时候,考虑只枚举其中一个状态。

【状压DP】【CF8C】 Looking for Order的更多相关文章

  1. Codeforces Beta Round #8 C. Looking for Order 状压dp

    题目链接: http://codeforces.com/problemset/problem/8/C C. Looking for Order time limit per test:4 second ...

  2. codeforces 8C. Looking for Order 状压dp

    题目链接 给n个物品的坐标, 和一个包裹的位置, 包裹不能移动. 每次最多可以拿两个物品, 然后将它们放到包里, 求将所有物品放到包里所需走的最小路程. 直接状压dp就好了. #include < ...

  3. 【题解】codeforces 8c Looking for Order 状压dp

    题目描述 Lena喜欢秩序井然的生活.一天,她要去上大学了.突然,她发现整个房间乱糟糟的--她的手提包里的物品都散落在了地上.她想把所有的物品都放回她的手提包.但是,这里有一点问题:她一次最多只能拿两 ...

  4. ZOJ3802 Easy 2048 Again (状压DP)

    ZOJ Monthly, August 2014 E题 ZOJ月赛 2014年8月 E题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?proble ...

  5. Codeforces Round #321 (Div. 2) D. Kefa and Dishes 状压dp

    题目链接: 题目 D. Kefa and Dishes time limit per test:2 seconds memory limit per test:256 megabytes 问题描述 W ...

  6. HDUOJ Clear All of Them I 状压DP

    Clear All of Them I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 122768/62768 K (Java/Oth ...

  7. HDU 1074 Doing Homework【状压DP】

    Doing Homework Problem Description Ignatius has just come back school from the 30th ACM/ICPC. Now he ...

  8. Doing Homework HDU - 1074 (状压dp)

    Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every ...

  9. 【状压DP】【HDOJ1074】

    http://acm.hdu.edu.cn/showproblem.php?pid=1074 Doing Homework Time Limit: 2000/1000 MS (Java/Others) ...

随机推荐

  1. 使用Photon引擎进行unity网络游戏开发(二)——Photon常用类介绍

    使用Photon引擎进行unity网络游戏开发(二)——Photon常用类介绍 Photon PUN Unity 网络游戏开发 Photon常用类介绍: IPunCallback PUNGIPunCa ...

  2. 爬虫2.5-scrapy框架-下载中间件

    目录 scrapy框架-下载中间件 scrapy框架-下载中间件 middlewares.py中有两个类,一个是xxSpiderMiddleware类 一个是xxDownloaderMiddlewar ...

  3. 基于C#的机器学习--颜色混合-自组织映射和弹性神经网络

    自组织映射和弹性神经网络 自组织映射(SOM),或者你们可能听说过的Kohonen映射,是自组织神经网络的基本类型之一.自组织的能力提供了对以前不可见的输入数据的适应性.它被理论化为最自然的学习方式之 ...

  4. Fluent Python: memoryview

    关于Python的memoryview内置类,搜索国内网站相关博客后发现对其解释都很简单, 我觉得学习一个新的知识点一般都要弄清楚两点: 1, 什么时候使用?(也就是能解决什么问题) 2,如何使用? ...

  5. loadrunner处理https请求

    录制到的脚本如下: login() { lr_think_time(10); web_url("verifycode.jsp", "URL=https://192.168 ...

  6. 03慕课网《进击Node.js基础(一)》API-URL网址解析

    url url.parse(url,query,host);解析域名 url必须,地址字符串 query可选 host 可选:在不清楚协议时正确解析 querystring 字符串和对象之间互相解析 ...

  7. FivePlus——成果展示

    思路描述:描述对于自己此次任务是如何思考的 这次作业没能帮上什么忙,刚开始还对这次作业有所期待,然而,第一次听他们讨论的时候就??? 之后又去查了一些诸如贪吃蛇类的小游戏,知道大概可以达成什么效果,但 ...

  8. ASP.NET Core 中的 Razor 页面介绍

    标题:ASP.NET Core 中的 Razor 页面介绍 地址:https://docs.microsoft.com/zh-cn/aspnet/core/razor-pages/index?view ...

  9. 定时器应用-点击按钮,div向右移动

    需求是点击button,div就一直往右移动,给个条件left=800px就停止移动,通过定时器来控制. 代码如下: <!DOCTYPE html> <html> <he ...

  10. WOL*LAN远程换醒命令行方法

    wol远程唤醒需要网卡的支持,现在一般的网卡也都支持,只有有线网络能实现. 这里介绍Wake On Lan Command Line的使用 下载地址 https://www.depicus.com/w ...