传送门

Description

给你n个点,每次可以从起点到最多两个点然后回到起点。求经过每个点最少一次的最短欧氏距离和是多少

Input

第一行是起点的坐标

第二行是点的个数\(n\)

下面\(n\)行是需要进过的点的坐标

Output

输出最短欧氏距离以及方案。方案是经过每个点的顺序。起点为\(0\)号点

Hint

\(For~All:\)

\(0~\leq~n~\leq~24\)

Solution

看到24就大概能想到是个状压DP

考虑做法

设\(f_S\)为走遍\(S\)中的点的ans。

转移任意枚举两个或一个点转移

然而这么做是\(O(4^n)\)的,GG

考虑事实上对于同一个状态,比如走过前3个点,第一次走1,2,第二次走3和第一次走3,第二次走1,2的答案是一样的。

于是对于一个集合,只任意选择集合中的一个元素,枚举他是怎么选的,就可以得到最优的答案。

Code

#include<cmath>
#include<cstdio>
#include<cstring>
#define rg register
#define ci const int
#define cl const long long int typedef long long int ll; namespace IO {
char buf[300];
} template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {putchar('-');x=-x;}
rg int top=0;
do {
IO::buf[++top]=x%10+'0';
} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template <typename T>
inline void mswap(T &a,T &b) {
T _temp=a;a=b;b=_temp;
} const int maxn = 30;
const int maxt = 20000000; struct M {
int p,v;
};
//M list[maxt]; struct Pos {
int x,y;
};
Pos MU[maxn]; int sx,sy,n,tcnt;
int frog[maxt],pre[maxt],list[maxt]; void dfs(ci);
int cost(ci,ci);
int dist(ci,ci); int main() {
qr(sx);qr(sy);qr(n);int dn=n-1;
MU[n].x=sx;MU[n].y=sy;
for(rg int i=0;i<n;++i) {qr(MU[i].x);qr(MU[i].y);}
for(rg int i=0;i<dn;++i) {
for(rg int j=i+1;j<n;++j) {
int p=(1<<i)|(1<<j);
int v=cost(i,j);
list[p]=v;
}
}
for(rg int i=0;i<n;++i) {
int p=1<<i;int v=dist(n,i)<<1;list[p]=v;
}
int all=(1<<n)-1;
memset(frog,0x3f,sizeof frog);frog[0]=0;
for(rg int i=1;i<=all;++i) {
for(rg int j=0;j<n;++j) if(i&(1<<j)) {
for(rg int k=0;k<n;++k) if(i&(1<<k)) {
int p=(1<<j)|(1<<k);
if(frog[i] > (frog[i^p]+list[p])) frog[i]=frog[i^p]+list[p],pre[i]=p;
}
break;
}
}
qw(frog[all],'\n',true);
dfs(all);
return 0;
} inline int cost(ci a,ci b) {
return dist(n,a)+dist(a,b)+dist(b,n);
} inline int dist(ci a,ci b) {
return (MU[a].x-MU[b].x)*(MU[a].x-MU[b].x)+(MU[a].y-MU[b].y)*(MU[a].y-MU[b].y);
} void dfs(ci x) {
if(!x) {qw(0,' ',true);return;}
dfs(x^pre[x]);
for(rg int i=0;i<n;++i) if(pre[x]&(1<<i)) qw(i+1,' ',true);
qw(0,' ',true);
}

Summary

当多个状态的转移等价的时候,考虑只枚举其中一个状态。

【状压DP】【CF8C】 Looking for Order的更多相关文章

  1. Codeforces Beta Round #8 C. Looking for Order 状压dp

    题目链接: http://codeforces.com/problemset/problem/8/C C. Looking for Order time limit per test:4 second ...

  2. codeforces 8C. Looking for Order 状压dp

    题目链接 给n个物品的坐标, 和一个包裹的位置, 包裹不能移动. 每次最多可以拿两个物品, 然后将它们放到包里, 求将所有物品放到包里所需走的最小路程. 直接状压dp就好了. #include < ...

  3. 【题解】codeforces 8c Looking for Order 状压dp

    题目描述 Lena喜欢秩序井然的生活.一天,她要去上大学了.突然,她发现整个房间乱糟糟的--她的手提包里的物品都散落在了地上.她想把所有的物品都放回她的手提包.但是,这里有一点问题:她一次最多只能拿两 ...

  4. ZOJ3802 Easy 2048 Again (状压DP)

    ZOJ Monthly, August 2014 E题 ZOJ月赛 2014年8月 E题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?proble ...

  5. Codeforces Round #321 (Div. 2) D. Kefa and Dishes 状压dp

    题目链接: 题目 D. Kefa and Dishes time limit per test:2 seconds memory limit per test:256 megabytes 问题描述 W ...

  6. HDUOJ Clear All of Them I 状压DP

    Clear All of Them I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 122768/62768 K (Java/Oth ...

  7. HDU 1074 Doing Homework【状压DP】

    Doing Homework Problem Description Ignatius has just come back school from the 30th ACM/ICPC. Now he ...

  8. Doing Homework HDU - 1074 (状压dp)

    Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Every ...

  9. 【状压DP】【HDOJ1074】

    http://acm.hdu.edu.cn/showproblem.php?pid=1074 Doing Homework Time Limit: 2000/1000 MS (Java/Others) ...

随机推荐

  1. gtest命令行测试案例

    使用gtest编写的测试案例通常本身就是一个可执行文件,因此运行起来非常方便.同时,gtest也为我们提供了一系列的运行参数(环境变量.命令行参数或代码里指定),使得我们可以对案例的执行进行一些有效的 ...

  2. HPUX修改disk实例号--11.31only

    有时由于一些原因或者用户的要求,需要修改Disk的实例号,这里简单介绍如何手工进行修改. 在修改之前需要做一些准备工作,即先将stale状态的设备文件清理掉,具体步骤如下: 使用ioscan命令列出s ...

  3. KETTLE监控

    kettle单实例环境下自身没有监控工具,但在集群下自带了监控工具. 一.集群自带的监控 kettle自带的集群监控工具可以监控转换的执行情况. 配置好集群后,打开浏览器:输入http://local ...

  4. redis利用key计时与计数

    计时 Setex 命令为指定的 key 设置值及其过期时间.如果 key 已经存在, SETEX 命令将会替换旧的值 基本命令: redis 127.0.0.1:6379> SETEX KEY_ ...

  5. Thunder团队——bug修正

    团队:欢迎来怼 发现的问题: 1.首先用户通过爱阅APP内部的网址跳转到各大电子书网站时,需要额外启动手机自身浏览器:就以豆瓣网为例,阅读豆瓣网上的一些书籍,是跳转到手机自带浏览器的,APP内部提供的 ...

  6. MacOS下搭建python环境

    1. 安装须知 Mac OS自身其实已经带有Python,版本为2.7.X,这个Python主要用于支持系统文件和XCode,所以我们在安装新的Python版本时候最好不要影响这部分. 这里就会出现一 ...

  7. 周总结<5>

    周次 学习时间 新编写代码行数 博客量(篇) 学到知识点 12 10 100 1 路由器的设置(ospf协议):网页设计:哈夫曼树(C语言数构) Html案例: <!DOCTYPE html P ...

  8. Java 数组转字符

    public static String toString(int[] arr){ String temp = ""; for(int i = 0;i<arr.length; ...

  9. Maya脚本——重命名物体的名称

    该脚本用于将图1中的命名变更为图2中的,把maya中使用相同名称的物体都重命名为不同的名称. 重命名的规则是:组名_原名称_序号 查阅了maya的官方手册:http://download.autode ...

  10. lintcode-402-连续子数组求和

    [402-连续子数组求和(http://www.lintcode.com/zh-cn/problem/continuous-subarray-sum/) 给定一个整数数组,请找出一个连续子数组,使得该 ...