MySQL索引优化案例浅析
MySQL是关系型数据库的一种,查询功能强,数据一致性高,数据安全性高,支持二级索引.但是性能比起非关系型数据库稍弱,特别是百万级以上的数据,很容易出现查询慢的现象.这时候要分析慢的原因,一般情况下是程序员的SQL写的烂,或者是没有索引,或者是索引失效等原因导致的.
案例分析:
场景一:订单导入,通过交易号避免重复导单
业务逻辑:订单导入时,为了避免重复导单,一般会通过交易号去数据库中查询,判断该订单是否已经存在.
最基础的sql语句:
mysql> select * from itdragon_order_list where transaction_id = "81X97310V32236260E";
+-------+--------------------+-------+------+----------+--------------+----------+------------------+-------------+-------------+------------+---------------------+
| id | transaction_id | gross | net | stock_id | order_status | descript | finance_descript | create_type | order_level | input_user | input_date |
+-------+--------------------+-------+------+----------+--------------+----------+------------------+-------------+-------------+------------+---------------------+
| 10000 | 81X97310V32236260E | 6.6 | 6.13 | 1 | 10 | ok | ok | auto | 1 | itdragon | 2017-08-18 17:01:49 |
+-------+--------------------+-------+------+----------+--------------+----------+------------------+-------------+-------------+------------+---------------------+ mysql> explain select * from itdragon_order_list where transaction_id = "81X97310V32236260E";
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | itdragon_order_list | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 33.33 | Using where |
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+-------------+
sql语句和查询都没有问题,但是功能一旦上线,查询慢的问题就迎面而来,几百万,几千万的订单,用全表扫描???那就完了....
怎么知道该sql语句是全表扫描?
通过desc命令和explain命令(功能是一样的)可以清楚MySQL是如何处理sql语句的,打印的内容分别是:
id : 查询序列号为1。
select_type : 查询类型是简单查询,简单的select语句没有union和子查询。
table : 表是 itdragon_order_list。
partitions : 没有分区。
type : 连接类型,all表示采用全表扫描的方式。
possible_keys : 可能用到索引为null。
key : 实际用到索引是null。
key_len : 索引长度当然也是null。
ref : 没有哪个列或者参数和key一起被使用。
Extra : 使用了where查询。
因为数据库中只有三条数据,所以rows和filtered的信息作用不大。这里需要重点了解的是type为ALL,全表扫描的性能是最差的,假设数据库中有几百万条数据,在没有索引的帮助下会异常卡顿。
初步优化:为transaction_id创建索引
mysql> create unique index idx_order_transaID on itdragon_order_list (transaction_id);
mysql> explain select * from itdragon_order_list where transaction_id = "81X97310V32236260E";
+----+-------------+---------------------+------------+-------+--------------------+--------------------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------------------+------------+-------+--------------------+--------------------+---------+-------+------+----------+-------+
| 1 | SIMPLE | itdragon_order_list | NULL | const | idx_order_transaID | idx_order_transaID | 453 | const | 1 | 100 | NULL |
+----+-------------+---------------------+------------+-------+--------------------+--------------------+---------+-------+------+----------+-------+
这里创建的索引是唯一索引,而非普通索引。
唯一索引打印的type值是const。表示通过索引一次就可以找到。即找到值就结束扫描返回查询结果。
普通索引打印的type值是ref。表示非唯一性索引扫描。找到值还要继续扫描,直到将索引文件扫描完为止。
显而易见,const的性能要远高于ref。并且根据业务逻辑来判断,创建唯一索引是合情合理的。
再次优化:覆盖索引
mysql> explain select transaction_id from itdragon_order_list where transaction_id = "81X97310V32236260E";
+----+-------------+---------------------+------------+-------+--------------------+--------------------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------------------+------------+-------+--------------------+--------------------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | itdragon_order_list | NULL | const | idx_order_transaID | idx_order_transaID | 453 | const | 1 | 100 | Using index |
+----+-------------+---------------------+------------+-------+--------------------+--------------------+---------+-------+------+----------+-------------+
这里将select * from
改为了 select transaction_id from
后
Extra 显示 Using index,表示该查询使用了覆盖索引,这是一个非常好的消息,说明该sql语句的性能很好。若提示的是Using filesort(使用内部排序)和Using temporary(使用临时表)则表明该sql需要立即优化了。
根据业务逻辑来的,查询结构返回transaction_id 是可以满足业务逻辑要求的。
场景二,订单管理页面,通过订单级别和录入时间排序
业务逻辑:优先处理订单级别高,录入时间长的订单。
既然是排序,首先想到的应该是order by, 还有一个可怕的 Using filesort 等着你。
最基础的sql语句
mysql> explain select * from itdragon_order_list order by order_level,input_date;
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+----------------+
| 1 | SIMPLE | itdragon_order_list | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 100 | Using filesort |
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+----------------+
首先,采用全表扫描就不合理,还使用了文件排序Using filesort,更加拖慢了性能。
MySQL在4.1版本之前文件排序是采用双路排序的算法,由于两次扫描磁盘,I/O耗时太长。后优化成单路排序算法。其本质就是用空间换时间,但如果数据量太大,buffer的空间不足,会导致多次I/O的情况。其效果反而更差。与其找运维同事修改MySQL配置,还不如自己乖乖地建索引。
初步优化:为order_level,input_date 创建复合索引
mysql> create index idx_order_levelDate on itdragon_order_list (order_level,input_date);
mysql> explain select * from itdragon_order_list order by order_level,input_date;
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+----------------+
| 1 | SIMPLE | itdragon_order_list | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 100 | Using filesort |
+----+-------------+---------------------+------------+------+---------------+------+---------+------+------+----------+----------------+
创建复合索引后你会惊奇的发现,和没创建索引一样???都是全表扫描,都用到了文件排序。是索引失效?还是索引创建失败?我们试着看看下面打印情况
mysql> explain select order_level,input_date from itdragon_order_list order by order_level,input_date;
+----+-------------+---------------------+------------+-------+---------------+---------------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------------------+------------+-------+---------------+---------------------+---------+------+------+----------+-------------+
| 1 | SIMPLE | itdragon_order_list | NULL | index | NULL | idx_order_levelDate | 68 | NULL | 3 | 100 | Using index |
+----+-------------+---------------------+------------+-------+---------------+---------------------+---------+------+------+----------+-------------+
将select * from
换成了 select order_level,input_date from
后。type从all升级为index,表示(full index scan)全索引文件扫描,Extra也显示使用了覆盖索引。可是不对啊!!!!检索虽然快了,但返回的内容只有order_level和input_date 两个字段,让业务同事怎么用?难道把每个字段都建一个复合索引?
MySQL没有这么笨,可以使用force index 强制指定索引。在原来的sql语句上修改 force index(idx_order_levelDate)
即可。
index(idx_order_levelDate) order by order_level,input_date;
+----+-------------+---------------------+------------+-------+---------------+---------------------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------------------+------------+-------+---------------+---------------------+---------+------+------+----------+-------+
| 1 | SIMPLE | itdragon_order_list | NULL | index | NULL | idx_order_levelDate | 68 | NULL | 3 | 100 | NULL |
+----+-------------+---------------------+------------+-------+---------------+---------------------+---------+------+------+----------+-------+
再次优化:订单级别真的要排序么?
其实给订单级别排序意义并不大,给订单级别添加索引意义也不大。因为order_level的值可能只有,低,中,高,加急,这四种。对于这种重复且分布平均的字段,排序和加索引的作用不大。
我们能否先固定 order_level 的值,然后再给 input_date 排序?如果查询效果明显,是可以推荐业务同事使用该查询方式。
mysql> explain select * from itdragon_order_list where order_level=3 order by input_date;
+----+-------------+---------------------+------------+------+---------------------+---------------------+---------+-------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------------------+------------+------+---------------------+---------------------+---------+-------+------+----------+-----------------------+
| 1 | SIMPLE | itdragon_order_list | NULL | ref | idx_order_levelDate | idx_order_levelDate | 5 | const | 1 | 100 | Using index condition |
+----+-------------+---------------------+------------+------+---------------------+---------------------+---------+-------+------+----------+-----------------------+
和之前的sql比起来,type从index 升级为 ref(非唯一性索引扫描)。索引的长度从68变成了5,说明只用了一个索引。ref也是一个常量。Extra 为Using index condition 表示自动根据临界值,选择索引扫描还是全表扫描。总的来说性能远胜于之前的sql。
上面两个案例只是快速入门,我们需严记一点:优化是基于业务逻辑来的。绝对不能为了优化而擅自修改业务逻辑。如果能修改当然是最好的。
MySQL索引优化案例浅析的更多相关文章
- MySQL索引优化案例
这里我们分成三种情况进行分析,分别是单表,两表,三表 1.单表 CREATE TABLE IF NOT EXISTS `article`( `id` ) NOT NULL PRIMARY KEY AU ...
- Mysql 索引优化分析
MySQL索引优化分析 为什么你写的sql查询慢?为什么你建的索引常失效?通过本章内容,你将学会MySQL性能下降的原因,索引的简介,索引创建的原则,explain命令的使用,以及explain输出字 ...
- 知识点:Mysql 索引优化实战(3)
知识点:Mysql 索引原理完全手册(1) 知识点:Mysql 索引原理完全手册(2) 知识点:Mysql 索引优化实战(3) 知识点:Mysql 数据库索引优化实战(4) 索引原理知识回顾 索引的性 ...
- mySql索引优化分析
MySQL索引优化分析 为什么你写的sql查询慢?为什么你建的索引常失效?通过本章内容,你将学会MySQL性能下降的原因,索引的简介,索引创建的原则,explain命令的使用,以及explain输出字 ...
- 深入浅出Mysql索引优化专题分享|面试怪圈
文章纲要 该文章结合18张手绘图例,21个SQL经典案例.近10000字,将Mysql索引优化经验予以总结,你可以根据纲要来决定是否继续阅读,完成这篇文章大概需要25-30分钟,相信你的坚持是不负时光 ...
- mysql索引优化
mysql 索引优化 >mysql一次查询只能使用一个索引.如果要对多个字段使用索引,建立复合索引. >越小的数据类型通常更好:越小的数据类型通常在磁盘.内存和CPU缓存中都需要更少的空间 ...
- MySQL索引优化步骤总结
在项目使用mysql过程中,随着系统的运行,发现一些慢查询,在这里总结一下mysql索引优化步骤 1.开发过程优化 开发过程中对业务表中查询sql分析sql执行计划(尤其是业务流水表),主要是查看sq ...
- MySQL索引优化看这篇文章就够了!
阅读本文大概需要 5 分钟. 来源:cnblogs.com/songwenjie/p/9410009.html 本文主要讨论MySQL索引的部分知识.将会从MySQL索引基础.索引优化实战和数据库索引 ...
- mysql索引优化比普通查询速度快多少
mysql索引优化比普通查询速度快多少 一.总结 一句话总结:普通查询全表查询,速度较慢,索引优化的话拿空间换时间,一针见血,所以速度要快很多. 索引优化快很多 空间换时间 1.软件层面优化数据库查询 ...
随机推荐
- C语言 · 排列数
算法提高 排列数 时间限制:1.0s 内存限制:256.0MB 问题描述 0.1.2三个数字的全排列有六种,按照字母序排列如下: 012.021.102.120.201.210 输入 ...
- 使用submit异步提交,阻止表单默认提交
<form id="addForm" onSubmit="return false;"> <input type="submit&q ...
- [ExtJS5学习笔记]第二十七节 CMD打包错误 Error C2009: YUI Parse Error (identifier is a reserved word => debugger;)
本文地址:http://blog.csdn.net/sushengmiyan/article/details/41242993 本文作者:sushengmiyan ------------------ ...
- 安全 流程服务器开新机器 内外网 iptables 安全组 用户安全root用户的使用.
安全 流程服务器开新机器 内外网 iptables 安全组 用户安全root用户的使用.
- kettle两表内链接的查询结果与sql语句的查询结果不符合?
1.教师表输入 2.学生表 查 3.学生表中查出的教师id进行排序 5.教师表中查出的同样也对教师的id进行排序 6.进行左连接 总结: 进行连接的时候的关键是同样对教师的id进行先排序
- (转)FFMPEG-数据结构解释(AVCodecContext,AVStream,AVFormatContext)
AVCodecContext 这是一个描述编解码器上下文的数据结构,包含了众多编解码器需要的参数信息 如果是单纯使用libavcodec,这部分信息需要调用者进行初始化:如果是使用整个FFMPEG库 ...
- Leetcode_num4_Reverse Integer
题目: Reverse digits of an integer. Have you thought about this? Here are some good questions to ask b ...
- bootstrap基础学习五篇
bootstrap表格 Bootstrap 提供了一个清晰的创建表格的布局.下表列出了 Bootstrap 支持的一些表格元素: 标签 描述 <table> 为表格添加基础样式. < ...
- 数据仓库与BI面试常见题目
一. 数据库 1. Oracle数据库,视图与表的区别?普通视图与物化视图的区别?物化视图的作用?materialized view 答:a:视图是虚拟表,提高了表的安全性,视图没有实际物理空间,而表 ...
- windows性能监视器的使用
https://blog.csdn.net/ab7434588/article/details/53023799 一般在客户端通过LoadRunner对服务器进行压力测试,都需要实时监控服务器端的系统 ...