w褶积矩阵、二值化旧图经核矩阵得到新图。

https://docs.gimp.org/en/plug-in-convmatrix.html

8.2. Convolution Matrix

8.2.1. Overview

Here is a mathematician's domain. Most of filters are using convolution matrix. With the Convolution Matrix filter, if the fancy takes you, you can build a custom filter.

What is a convolution matrix? It's possible to get a rough idea of it without using mathematical tools that only a few ones know. Convolution is the treatment of a matrix by another one which is called “kernel”.

The Convolution Matrix filter uses a first matrix which is the Image to be treated. The image is a bi-dimensional collection of pixels in rectangular coordinates. The used kernel depends on the effect you want.

GIMP uses 5x5 or 3x3 matrices. We will consider only 3x3 matrices, they are the most used and they are enough for all effects you want. If all border values of a kernel are set to zero, then system will consider it as a 3x3 matrix.

The filter studies successively every pixel of the image. For each of them, which we will call the “initial pixel”, it multiplies the value of this pixel and values of the 8 surrounding pixels by the kernel corresponding value. Then it adds the results, and the initial pixel is set to this final result value.

A simple example:

On the left is the image matrix: each pixel is marked with its value. The initial pixel has a red border. The kernel action area has a green border. In the middle is the kernel and, on the right is the convolution result.

Here is what happened: the filter read successively, from left to right and from top to bottom, all the pixels of the kernel action area. It multiplied the value of each of them by the kernel corresponding value and added results. The initial pixel has become 42: (40*0)+(42*1)+(46*0) + (46*0)+(50*0)+(55*0) + (52*0)+(56*0)+(58*0) = 42. (the filter doesn't work on the image but on a copy). As a graphical result, the initial pixel moved a pixel downwards.

Convolution Matrix的更多相关文章

  1. 卷积、卷积矩阵(Convolution matrix)与核(Kernel)

    在图像处理领域,Kernel = convolution matrix = mask,它们一般都为一个较小的矩阵: 用于:Sharpen,Blur, Edge enhance,Edge detect, ...

  2. 2D image convolution

    在学习cnn的过程中,对convolution的概念真的很是模糊,本来在学习图像处理的过程中,已对convolution有所了解,它与correlation是有不同的,因为convolution = ...

  3. 数字图像处理- 3.4 空间滤波 and 3.5 平滑空间滤波器

    3.4 空间滤波基础 • Images are often corrupted by random variations in intensity, illumination, or have poo ...

  4. [Matlab] Galois Field arrays

    Operations supported for Galois Field arrays: + - - Addition and subtraction of Galois arrays. * / \ ...

  5. Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

    前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...

  6. 【ufldl tutorial】Convolution and Pooling

    卷积的实现: 对于每幅图像,每个filter,首先从W中取出对应的filter: filter = squeeze(W(:,:,filterNum)); 接下来startercode里面将filter ...

  7. Understanding Convolution in Deep Learning

    Understanding Convolution in Deep Learning Convolution is probably the most important concept in dee ...

  8. Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

    3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 ...

  9. Deep Learning 学习随记(七)Convolution and Pooling --卷积和池化

    图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接 ...

随机推荐

  1. python生成器,函数,数组

    1.什么是生成器用一个比喻来形容,工厂中生产保龄球的流水线,机器每次只生产一个保龄球,下次继续生产下一个,直到停止(原料不足,停止供电等条件)为止.机器就是我们的生成器. 2.使用示例在python中 ...

  2. Windows操作系统下 使用c++ WIN32API禁用控制台最小化和关闭按钮

    #include<Windows.h> //屏蔽控制台最小按钮和关闭按钮 HWND hwnd = GetConsoleWindow(); HMENU hmenu = GetSystemMe ...

  3. renderer:function参数介绍

    转载自:http://blog.sina.com.cn/s/blog_9eaf28f90101b7y3.html renderer:function(value, cellmeta, record, ...

  4. excel鼠标拖选慢shift选择快的问题

    今天遇到个惊天大坑,关于excel的,最近,一直在调查这个东西,刚开始真的是毫无头绪,反正现在就是excel的值的copy会偶尔慢,慢的情况也是不明白,就是稀里糊涂的调查. 刚开始连100%再现这个b ...

  5. AM335x 添加 HUAWEI MU609 Mini PCIe Module,并用pppd 启动相关设备

    kernel 的配置 kernel 3.2.0 make menuconfig Device Drivers ---> [*] USB support ---> <*> USB ...

  6. modSecurity和Naxsi哪个更适合Nginx搭建WAF

    nginx增加modsecurity模块 modsecurity原本是Apache上的一款开源waf,可以有效的增强web安全性,目前已经支持nginx和IIS,配合nginx的灵活和高效,可以打造成 ...

  7. Entity Framework(四):使用DbModelBuilder API创建表结构

    DbContext类有一个OnModelCreating方法,它用于流利地配置领域类到数据库模式的映射.下面我们以fluent API的方式来定义映射.首先,先将Product类注释掉,重新编写该类, ...

  8. 调用半截的div

    不能引用jquery: <script src="${rootUrl }js/jquery/jquery.js" type="text/javascript&quo ...

  9. Differential Geometry之第八章常Gauss曲率曲面

    第八章.常Gauss曲率曲面 1.常正Gauss曲率曲面 2.常负Gauss曲率曲面与Sine-Gordon方程 3.Hilbert定理 4.Backlund变换 4.1.线汇与焦曲面 4.2.Bac ...

  10. java 多线程 2 Thread中start()和run()的区别