P1176 路径计数2

题目描述

一个N×N的网格,你一开始在(1,1),即左上角。每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N),即右下角有多少种方法。

但是这个问题太简单了,所以现在有M个格子上有障碍,即不能走到这M个格子上。

输入输出格式

输入格式:

输入文件第1行包含两个非负整数N,M,表示了网格的边长与障碍数。

接下来M行,每行两个不大于N的正整数x,y。表示坐标(x,y)上有障碍不能通过,且有1≤x,y≤n,且x,y至少有一个大于1,并请注意障碍坐标有可能相同。

输出格式:

一个非负整数,为答案mod100003后的结果。

输入输出样例

输入样例#1: 复制

3 1
3 1
输出样例#1: 复制

5

说明

对于20%的数据,有N≤3;

对于40%的数据,有N≤100;

对于40%的数据,有M=0;

对于100%的数据,有N≤1000,M≤100000。

这道题是不是过水叻QAQ不过挂上来以后也可以看看嘛...

就是直接$n^2$递推转移即可...

#include<iostream>
#include<cstdio>
#define MOD 100003
using namespace std; int n, m; int dp[][], flag[][]; int main ( ) {
scanf ( "%d%d", &n, &m );
for ( int i = ; i <= m; i ++ ) {
int x, y;
scanf ( "%d%d", &x, &y );
flag[x][y] = ;
}
dp[][] = ;
for ( int i = ; i <= n; i ++ )
for ( int j = ; j <= n; j ++ ) {
if ( !flag[i+][j] ) dp[i+][j] = ( dp[i+][j] + dp[i][j] ) % MOD;
if ( !flag[i][j+] ) dp[i][j+] = ( dp[i][j] + dp[i][j+] ) % MOD;
}
printf ( "%d", dp[n][n] );
return ;
}

【洛谷】P1176: 路径计数2【递推】的更多相关文章

  1. 洛谷——P1176 路径计数2

    P1176 路径计数2 题目描述 一个N \times NN×N的网格,你一开始在(1,1)(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N)(N,N),即右下角有 ...

  2. 洛谷 P1176 路径计数2

    P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1, 1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法. 但是这个问题太简单了, ...

  3. 洛谷P1608 路径计数

    题目简介 题目描述 给你一个N点M边的有向图,求第一个点到第n个点的最短路和最短路条数 题目分析 很明显直接Dijkstra求最短路,加一个最短路计数 如下: if(dis[y]>dis[x]+ ...

  4. 【洛谷 P5110】 块速递推(矩阵加速,分块打表)

    题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...

  5. 洛谷P1192-台阶问题(线性递推 扩展斐波那契)

    占坑 先贴上AC代码 回头来补坑 #include <iostream> using namespace std; int n, k; const int mod = 100003; lo ...

  6. 洛谷 P6031 - CF1278F Cards 加强版(推式子+递推)

    洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{ ...

  7. 洛谷 P2807 三角形计数

    P2807 三角形计数 题目背景 三角形计数(triangle) 递推 题目描述 把大三角形的每条边n等分,将对应的等分点连接起来(连接线分别平行于三条边),这样一共会有多少三角形呢?编程来解决这个问 ...

  8. 洛谷P1144-最短路计数-最短路变形

    洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra ...

  9. P2602 [ZJOI2010]数字计数(递推)

    P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...

  10. 洛谷P4071-[SDOI2016]排列计数 题解

    SDOI2016-排列计数 发现很多题解都没有讲清楚这道题为什么要用逆元.递推公式怎么来的. 我,风雨兼程三十载,只为写出一篇好题解. 还是我来造福大家一下吧. 题目大意: 一个长度为 n 且 1~n ...

随机推荐

  1. Python面向对象学习 1 (什么是面向对象,面向对象的应用场景,待更新)

    程序设计的三种基本结构: 面向对象,面向过程,函数式编程   1,什么是面向对象编程    面向对象编程是一种编程方式,此编程方式的落地需要使用 “类” 和 “对象” 来实现,所以,面向对象编程其实就 ...

  2. Deep Learning基础--理解LSTM网络

    循环神经网络(RNN) 人们的每次思考并不都是从零开始的.比如说你在阅读这篇文章时,你基于对前面的文字的理解来理解你目前阅读到的文字,而不是每读到一个文字时,都抛弃掉前面的思考,从头开始.你的记忆是有 ...

  3. 如何优雅地使用vim编辑器

    如何优雅地使用vim编辑器大赞..原文链接:http://jackiekuo.com/code/2014/05/07/use-vim-the-pragmatic-way/ 接上篇如何优雅地使用Vim? ...

  4. Effective C++笔记(二):构造/析构/赋值运算

    参考:http://www.cnblogs.com/ronny/p/3740926.html 条款05:了解C++默默编写并调用哪些函数 如果自定义一个空类的话,会自动生成默认构造函数.拷贝构造函数. ...

  5. webuploader插件使用分析

    大致架构: 前端:html5+ajax 后端:java (struts框架相关) 碰到问题: 后台coder给我提供一个接口./file/uploader.do?upFile=?,让我上传文件对应up ...

  6. free之后将指针置为NULL

    free一个指针,只是将指针指向的内存空间释放掉了,并没有将指针置为NULL,指针仍指向被释放掉的内存的地址,在判断指针是否为NULL的时候,通常是通过if(pt == NULL) ,这时,导致指针成 ...

  7. 使用Nginx代理Django

    一.准备环境 检查python版本以及pip版本 [root@linux-node01 src]# python --version Python 2.7.5 [root@linux-node01 s ...

  8. [你必须知道的.NET]第二十二回:字符串驻留(上)---带着问题思考

    发布日期:2008.8.27 作者:Anytao © 2008 Anytao.com ,Anytao原创作品,转贴请注明作者和出处. 说在,开篇之前 走钢丝的人,在刺激中体验快感.带着问题思考,在问题 ...

  9. 以Docker容器方式安装Ceph

    获取Ceph的Docker镜像 因为公司对于网络环境的限制,安装ceph时使用ceph-deploy反而很不方便,且ssh免密码方式也不适用,所以使用docker方式安装. Git地址 https:/ ...

  10. IEEEXtreme 10.0 - Full Adder

    这是 meelo 原创的 IEEEXtreme极限编程大赛题解 Xtreme 10.0 - Full Adder 题目来源 第10届IEEE极限编程大赛 https://www.hackerrank. ...