【洛谷】P1176: 路径计数2【递推】
P1176 路径计数2
题目描述
一个N×N的网格,你一开始在(1,1),即左上角。每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N),即右下角有多少种方法。
但是这个问题太简单了,所以现在有M个格子上有障碍,即不能走到这M个格子上。
输入输出格式
输入格式:
输入文件第1行包含两个非负整数N,M,表示了网格的边长与障碍数。
接下来M行,每行两个不大于N的正整数x,y。表示坐标(x,y)上有障碍不能通过,且有1≤x,y≤n,且x,y至少有一个大于1,并请注意障碍坐标有可能相同。
输出格式:
一个非负整数,为答案mod100003后的结果。
输入输出样例
说明
对于20%的数据,有N≤3;
对于40%的数据,有N≤100;
对于40%的数据,有M=0;
对于100%的数据,有N≤1000,M≤100000。
这道题是不是过水叻QAQ不过挂上来以后也可以看看嘛...
就是直接$n^2$递推转移即可...
#include<iostream>
#include<cstdio>
#define MOD 100003
using namespace std; int n, m; int dp[][], flag[][]; int main ( ) {
scanf ( "%d%d", &n, &m );
for ( int i = ; i <= m; i ++ ) {
int x, y;
scanf ( "%d%d", &x, &y );
flag[x][y] = ;
}
dp[][] = ;
for ( int i = ; i <= n; i ++ )
for ( int j = ; j <= n; j ++ ) {
if ( !flag[i+][j] ) dp[i+][j] = ( dp[i+][j] + dp[i][j] ) % MOD;
if ( !flag[i][j+] ) dp[i][j+] = ( dp[i][j] + dp[i][j+] ) % MOD;
}
printf ( "%d", dp[n][n] );
return ;
}
【洛谷】P1176: 路径计数2【递推】的更多相关文章
- 洛谷——P1176 路径计数2
P1176 路径计数2 题目描述 一个N \times NN×N的网格,你一开始在(1,1)(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N)(N,N),即右下角有 ...
- 洛谷 P1176 路径计数2
P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1, 1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法. 但是这个问题太简单了, ...
- 洛谷P1608 路径计数
题目简介 题目描述 给你一个N点M边的有向图,求第一个点到第n个点的最短路和最短路条数 题目分析 很明显直接Dijkstra求最短路,加一个最短路计数 如下: if(dis[y]>dis[x]+ ...
- 【洛谷 P5110】 块速递推(矩阵加速,分块打表)
题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...
- 洛谷P1192-台阶问题(线性递推 扩展斐波那契)
占坑 先贴上AC代码 回头来补坑 #include <iostream> using namespace std; int n, k; const int mod = 100003; lo ...
- 洛谷 P6031 - CF1278F Cards 加强版(推式子+递推)
洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{ ...
- 洛谷 P2807 三角形计数
P2807 三角形计数 题目背景 三角形计数(triangle) 递推 题目描述 把大三角形的每条边n等分,将对应的等分点连接起来(连接线分别平行于三条边),这样一共会有多少三角形呢?编程来解决这个问 ...
- 洛谷P1144-最短路计数-最短路变形
洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra ...
- P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...
- 洛谷P4071-[SDOI2016]排列计数 题解
SDOI2016-排列计数 发现很多题解都没有讲清楚这道题为什么要用逆元.递推公式怎么来的. 我,风雨兼程三十载,只为写出一篇好题解. 还是我来造福大家一下吧. 题目大意: 一个长度为 n 且 1~n ...
随机推荐
- 郑轻校赛 2127 tmk射气球 (数学)
Description 有一天TMK在做一个飞艇环游世界,突然他发现有一个气球匀速沿直线飘过,tmk想起了他飞艇上有一把弓,他打算拿弓去射气球,为了提高射击的准确性,他首先在飞艇上找到一个离气球最近的 ...
- 深入理解Spring系列之十:DispatcherServlet请求分发源码分析
转载 https://mp.weixin.qq.com/s/-kEjAeQFBYIGb0zRpST4UQ DispatcherServlet是SpringMVC的核心分发器,它实现了请求分发,是处理请 ...
- [004] last_k_node
[Description] find the k-th node from the last node of single linked list. e.g. Linked-list: 1-2-3-4 ...
- Term Term ssh登陆linux后 显示乱码
setup----terminal----locale----“chinese” OK!!!!!
- 安装Https证书
安装证书 IIS 6 支持PFX格式证书,下载包中包含PFX格式证书和密码文件.以沃通证书为例: 文件说明: 1. 证书文件214083006430955.pem,包含两段内容,请不要删除任何一段内容 ...
- 关于分布式Session 的几种实现方式
分布式Session的几种实现方式 1.基于数据库的Session共享 2.基于NFS共享文件系统 3.基于memcached 的session,如何保证 memcached 本身的高可用性? 4. ...
- selenium启动chrome模拟器模拟手机
一.如果chrome选项里边有这个模拟设备(比如iPhone 6 Plus): 1.先启动Selenium Grid, 比如命令:java -jar selenium-server-standalon ...
- js中的cookie使用和vue-cookie的使用
在HTTP协议的定义中,采用了一种机制来记录客户端和服务器端交互的信息,这种机制被称为cookie,cookie规范定义了服务器和客户端交互信息的格式.生存期.使用范围.安全性. 在JavaScrip ...
- python实现IMAP协议下email收取
本文为转载,原文在这里. 所谓无痕取信,目前主要是指从邮箱中把信件收取后,邮箱内状态不发生任何改变.这里的状态主要是指两部分,一部分是邮件状态不变,即已读与未读状态不变,另一部分是指邮箱记录的登陆IP ...
- JS函数练习题
第一题:封装一个输入半径求圆的面积的函数 var banJing = parseInt(prompt("请输入圆的半径")); var x = m(banJing); alert( ...