$ >Codeforces \space 408 E.\ Curious Array<$

题目大意 :

有一个长度为 \(n\) 的序列 \(a\) ,\(m\) 次操作,每一次操作给出 \(l, r, k\) ,使得 \(i \in[l, r]\) 加上 \(i-l+k\choose k\) ,求 \(m\) 次操作后的序列

\(1 \leq n, m \leq 10^5, 0 \leq k \leq 100\)

解题思路 :

观察发现这个操作是加上 \(C_{k+i}^{k}\) 这样的东西,根据组合数的递推公式 $C_{n}^{m} = C_{n-1}^{m} + C_{n-1}^{m-1} $ 可以得知,操作的本质是加上对 \((1,1,1...1) (r-l+1)\) 个 \(1\) 这个序列做 \(k\) 次前缀和后的结果。

所以可以把序列分成 \(k\) 层来处理,每一次操作在第 \(k\) 层的 \(l\) 位置加上 \(1\) ,全部做完之后对从高到低对每一层做前缀和,下一层加上上一层对应位置的前缀和即可。但是还要在 \(r+1\) 处减去贡献,考虑 \(k\) 次前缀和的贡献会对其下面所有层产生影响,不难发现此时第 \(k-i\) 层要被减掉的贡献是做 \(i\) 次前缀和前 \(r-l+1\) 项的和,对应回原来的组合数减去即可。

/*program by mangoyang*/
#pragma GCC optimize("Ofast","inline","-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int f = 0, ch = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
#define int ll
const int N = 200005, Mod = 1e9+7;
int js[N], inv[N], a[N][105], n, m;
inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % Mod)
if(b & 1) ans = 1ll * ans * a % Mod;
return ans;
}
inline int C(int x, int y){ return js[x] * inv[y] % Mod * inv[x-y] % Mod; }
signed main(){
js[0] = inv[0] = 1;
for(int i = 1; i < N; i++)
js[i] = 1ll * js[i-1] * i % Mod, inv[i] = Pow(js[i], Mod - 2);
read(n), read(m);
for(int i = 1; i <= n; i++) read(a[i][0]);
for(int i = 1, l, r, k; i <= m; i++){
read(l), read(r), read(k), a[l][k+1]++;
for(int j = 1; j <= k + 1; j++)
(a[r+1][j] -= C(r - l + k - j + 1, k - j + 1)) %= Mod;
}
for(int i = 101; i >= 0; i--){
int s = 0;
for(int j = 1; j <= n; j++){
(s += a[j][i+1]) %= Mod;
(a[j][i] += s) %= Mod;
}
}
for(int i = 1; i <= n; i++)
printf("%lld ", (a[i][0] % Mod + Mod) % Mod);
return 0;
}

Codeforces 408 E. Curious Array的更多相关文章

  1. codeforces 407C Curious Array

    codeforces 407C Curious Array UPD: 我觉得这个做法比较好理解啊 参考题解:https://www.cnblogs.com/ChopsticksAN/p/4908377 ...

  2. Codeforces 442C Artem and Array(stack+贪婪)

    题目连接:Codeforces 442C Artem and Array 题目大意:给出一个数组,每次删除一个数.删除一个数的得分为两边数的最小值,假设左右有一边不存在则算作0分. 问最大得分是多少. ...

  3. Codeforces Round #504 D. Array Restoration

    Codeforces Round #504 D. Array Restoration 题目描述:有一个长度为\(n\)的序列\(a\),有\(q\)次操作,第\(i\)次选择一个区间,将区间里的数全部 ...

  4. CodeForces 408E Curious Array(组合数学+差分)

    You've got an array consisting of n integers: a[1], a[2], ..., a[n]. Moreover, there are m queries, ...

  5. Curious Array Codeforces - 407C(高阶差分(?)) || sequence

    https://codeforces.com/problemset/problem/407/C (自用,勿看) 手模一下找一找规律,可以发现,对于一个修改(l,r,k),相当于在[l,r]内各位分别加 ...

  6. Curious Array CodeForces - 407C (高阶差分)

    高阶差分板子题 const int N = 1e5+111; int a[N], n, m, k; int C[N][111], d[N][111]; signed main() { scanf(&q ...

  7. Educational Codeforces Round 21 D.Array Division(二分)

    D. Array Division time limit per test:2 seconds memory limit per test:256 megabytes input:standard i ...

  8. Codeforces 754A Lesha and array splitting(简单贪心)

    A. Lesha and array splitting time limit per test:2 seconds memory limit per test:256 megabytes input ...

  9. Educational Codeforces Round 11A. Co-prime Array 数学

    地址:http://codeforces.com/contest/660/problem/A 题目: A. Co-prime Array time limit per test 1 second me ...

随机推荐

  1. 20155117王震宇 2006-2007-2 《Java程序设计》第5周学习总结

    教材学习内容总结 try & catch java中的错误会被打包成对象,可以尝试(try)捕捉(catch)代表错误的对象后做一些处理.如果发生错误,会跳到catch的区块并执行. 异常结构 ...

  2. Unity下实现弹簧骨骼(Spring Bone)

    关于这个效果的名称,我一直没找到一个比较正式的说法.Spring Bone这个说法是来自于Anima2D这个插件中的一个演示用的脚本,我直接译成弹簧骨骼. 一般常见于对人物的头发的模拟上. 当然也可以 ...

  3. ActiveMQ笔记之点对点队列(Point-to-Point)

    1. 点对点通信 点对点是一种一对一通信方式,更像是有一个队列,一个人往队列里放消息,另一个人从队列中取消息,其最大的特点是一个消息只会被消费一次,即使有多个消费者同时消费,他们消费的也是不同的消息. ...

  4. 固定bottom,页面其它可滑动实现方案

    利用flex布局, <html> <body> <div class='container'> <div class='content'></di ...

  5. 无key值的json数组解析

    [    [        {            "cartId": 9223,            "factoryId": 143,          ...

  6. 【IDEA】与Eclipse "Link with Editor"等价功能设置

    Link With Editor是Eclipse内置功能中十分小巧,但却异常实用的一个功能.这个开关按钮 (Toggle Button) 出现在各式导航器视图 ( 例如 Resource Explor ...

  7. Mysql储存过程4:mysql变量设置

    默认全局变量是两个@@开头, 可用show variables查看所有默认变量: @@user #declare定义变量只能用在储存过程中 #declare 变量名 数据类型 可选类型 declare ...

  8. 【Python学习】csv库

    csv(Comma-Separated Values, 逗号分割值)是存储表格数据的常用文件格式. 它每一行都用一个换行符分隔,列与列之间用逗号分隔. 本地文件 Python的csv库可以非常简单地修 ...

  9. Linux下查看进程占用内存的最好方式

    今天看到stackoverflow上关于linux下如何查看某个进程占用的内存是多少的回答,觉得非常棒,不过是全英文的,很多人可能看不懂,所以我翻译一下 翻译自http://stackoverflow ...

  10. python爬虫多线程编程

    #使用了线程库 import threading from queue import Queue from bs4 import BeautifulSoup import json import re ...