《时间序列分析——基于R》王燕,读书笔记
笔记:
一、检验:
1、平稳性检验:
- 图检验方法:
时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列
自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢
- 构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包
2、纯随机性检验、白噪声检验(Box.test(data,type,lag=n)——lag表示输出滞后n阶的白噪声检验统计量,默认为滞后1阶的检验统计量结果)
1、Q统计量:type=“Box-Pierce”
2、LB统计量:type=“Ljung-Box”
笔记:
- 图检验方法:
- 构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包
1.1平稳性检验1.2ARMA的p、q定阶——acf(),pacf(),auto.arima()自动定阶1.3建模arima()1.4模型显著性检验:残差的白噪声检验Box.test();参数显著性检验t分布
2.1趋势拟合:直线、曲线(一般是多项式,还有其它函数)2.2平滑法
- 移动平均法:SMA()——TTR包
- 指数平滑法:HoltWinters()
1平稳性检验,差分运算2拟合ARMA3白噪声检验
4.1建立线性模型4.2对滞后的因变量间拟合线性模型,对模型做残差自相关DW检验。dwtest()——lmtest包,增加选项order.by指定延迟因变量4.3对残差建立ARIMA模型
第一章 简介
- 统计时序分析方法:
1、频域分析方法2、时域分析方法
- 步骤:
1、观察序列特征2、根据序列特征选择模型3、确定模型的口径4、检验模型,优化模型5、推断序列其它统计性质或预测序列将来的发展
- 时域分析研究的发展方向:
1、AR,MA,ARMA,ARIMA(Box-Jenkins模型)2、异方差场合:ARCH,GARCH等(计量经济学)3、多变量场合:“变量是平稳”不再是必需条件,协整理论3、非线性场合:门限自回归模型,马尔科夫转移模型
第二章 时间序列的预处理
- 均值Ex
- 方差,随机事件呈现出纯随机波动的特征,就认为该随机事件没有包含任何值得提取的有用信息。
1、Q统计量:type=“Box-Pierce”2、LB统计量:type=“Ljung-Box”
- 平稳序列通常具有短期相关性,若序列之间存在显著的相关关系,通常只存在于延迟时期比较短的序列值之间,因此lag不用全部进行延迟检验。
第三章 平稳时间序列分析——ARMA
1)p阶差分:p-1阶差分后序列再进行一次1阶差分运算成为p阶差分运算2)k步差分:相距k期的两个序列值之间的减法运算称为k步差分运算
xt-1=B*xtxt-2=B2*xt...xt-p=Bp*xt
1)p阶差分:(1-B)pxt2)k步差分:(1-Bk)xt
- 齐次线性差分方程:h(t)=0
- 非齐次线性差分方程:
1、AR模型2、MA模型3、ARMA模型:适用于平稳白噪声序列
1)求出该观察值序列的样本相关系数(ACF)和样本偏相关系数(PACF)2)选择ARMA(p,q)的参数p和q,进行拟合:自动定阶参数auto.arima()——需要zoo包和forecast包P793)检验模型的有效性:模型显著性检验(残差序列应该为白噪声序列)和参数显著性检验4)多建立几个拟合模型,选择最优模型5)预测forecast()——需要forecast包P100
1)Wold分解定理:对于任何一个离散平稳过程{xt},它都可以分解为两个不相关的平稳序列之和,其中一个为确定性的,另一个为随机性的。2)Cramer分解定理:任何一个时间序列{xt}都可以分解为两部分的叠加,其中一部分是由多项式决定的确定性趋势成分,另一个是平稳的0均值误差成分
- 四大类因素:
1)长期趋势2)循环波动3)季节性变化4)随机波动
- 相互作用模式
1)加法模型2)乘法模型
- 目标
1)克服其它因素影响,单纯测度某一个确定性因素的(长期趋势或季节效应)2)推断出各种确定性因素彼此之间的相互作用关系以及它们对序列的综合影响
- 局限
1)确定性因素分解方法只能提取强劲的确定性信息,对随机性信息浪费严重
2)确定性因素分解方法把所有序列的变化都归结为四因素的综合影响,却始终无法提供明确、有效的方法判断各大因素之间确切的作用关系
- 趋势拟合法
线性拟合:lm()曲线拟合:lm或nls,二次型,指数型。。。
- 平滑法
移动平均法:SMA()——TTR包指数平滑法:HoltWinters()
第五章 非平稳序列——随机时序分析
- 线性趋势,1阶差分就可以实现趋势平稳
- 曲线趋势,低阶(2阶或3阶)差分就可以提取曲线趋势的影响
- 周期序列,步长为周期长度的差分运算
- 综合:趋势+周期的序列——1阶差分去掉线性趋势,在1阶差分的基础上进行12步差分去掉年为单位的周期影响(季节波动)
- ARIMA模型
- 梳系数模型:模型中有部分自相关系数或平滑系数为0(将自相关较小的阶数的系数设置为0,其它大于2D的系数为NA)
- 季节模型(加法,乘积)
- 优点:对确定性信息的提取比较充分
- 局限:很难对模型进行直观解释
- 拉格朗日乘子检验(LM检验)ArchTest()——FinTS包
- PortmanteauQ检验:对残差平方序列进行纯随机性检验Box.test()
第六章 多元时间序列分析
- type=“nc”:无常数均值,无趋势类型
- type=“c”:有常数均值,无趋势类型
- type=“ct”:有常数均值,又有趋势类型
《时间序列分析——基于R》王燕,读书笔记的更多相关文章
- 【转】时间序列分析——基于R,王燕
<时间序列分析——基于R>王燕,读书笔记 笔记: 一.检验: 1.平稳性检验: 图检验方法: 时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列 自相关图检验:(ac ...
- 《时间序列分析及应用:R语言》读书笔记--第一章 引论
"春节假期是难得的读书充电的时间."--来自某boss.假期能写多少算多少,一个是题目中的这本书,另一个是<python核心编程>中的高级部分,再一个是拖着的<算 ...
- 《时间序列分析及应用:R语言》读书笔记--第二章 基本概念
本章介绍时间序列中的基本概念.特别地,介绍随机过程.均值.方差.协方差函数.平稳过程和自相关函数等概念. 2.1时间序列与随机过程 关于随机过程的定义,本科上过相关课程,用的是<应用随机过程&g ...
- 《零成本实现Web性能测试:基于Apache JMeter》读书笔记
1.性能测试概念 性能测试目的: 评估系统能力,验证系统是否符合预期性能指标 识别系统中的弱点 系统调优,改进系统性能 检测长时间运行可能发生的问题,揭示隐含问题 验证稳定性.可靠性 常见性能指标 B ...
- R语言实战读书笔记(八)回归
简单线性:用一个量化验的解释变量预测一个量化的响应变量 多项式:用一个量化的解决变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性:用两个或多个量化的解释变量预测一个量化的响应变量 多变量: ...
- R in action读书笔记(22)第十六章 高级图形进阶(下)
16.2.4 图形参数 在lattice图形中,lattice函数默认的图形参数包含在一个很大的列表对象中,你可通过trellis.par.get()函数来获取,并用trellis.par.set() ...
- R in action读书笔记(20)第十五章 处理缺失数据的高级方法
处理缺失数据的高级方法 15.1 处理缺失值的步骤 一个完整的处理方法通常包含以下几个步骤: (1) 识别缺失数据: (2) 检查导致数据缺失的原因: (3) 删除包含缺失值的实例或用合理的数值代替( ...
- R in action读书笔记(17)第十二章 重抽样与自助法
12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相 ...
- R in action读书笔记(7)-第七章:基本统计分析(下)
7.3相关 相关系数可以用来描述定量变量之间的关系.相关系数的符号(±)表明关系的方向(正相关或负相关),其值的大小表示关系的强弱程度(完全不相关时为0,完全相关时为1).除了基础安装以外,我们还将使 ...
随机推荐
- struts2 constant详解
<!-- 指定Web应用的默认编码集,相当于调用 HttpServletRequest的setCharacterEncoding方法 --> <constant nam ...
- bootstrap分页查询传递中文参数到后台(get方式提交)
<!--分页 --> <div style="width: 380px; margin: 0 auto; margin-top: 50px;"> <u ...
- C#开发微信公众平台开发-微信海报介绍和开发流程
“让客户发展客户”,微信海报才是微信公众平台最高明的吸粉手段,海报上有粉丝的专属二维码,有粉丝的头像及商户宣传的广告等.新粉丝扫描这个专属二维码会关注公众号,同时分享海报的粉丝会增加积分换取礼品或者优 ...
- 如何读懂statspack报告
前言:这篇文章是我从网上找到的,但可惜不知道是哪位大侠写(译)的,因此这里无法注明了.仔细看了看,这篇文章对初学者应该很有帮助,写的比较详细,通俗易懂,因此整理一下,便于阅读:内容略有调整,不单做调整 ...
- ansible安装配置及最佳实践roles
ansible是什么? ansible是一款轻量级配置管理工具,用于远程批量部署.安装.配置.类似的还有puppet.saltstack,各有所长,任君自选. 官方文档:http://docs.ans ...
- Nginx - 隐藏或修改版本号
1. 前言 无论是修改 Nginx 版本还是隐藏 Nginx 版本号,都是很简单的操作,对外来说,相对更安全些. 2. 修改 Nginx 版本号 对于修改 Nginx 版本号来说,需要在源码的基础上进 ...
- Nginx 原理篇
前言 在学习 Nginx 之前,我们首先有必要搞清楚下面几个问题: 1. Web服务器是怎么工作的? 2. Apache 与 Nginx 有何异同? 3. Nginx 工作模式是怎样的? 下面就围绕这 ...
- C#子线程中更新ui
本文实例总结了C#子线程更新UI控件的方法,对于桌面应用程序设计的UI界面控制来说非常有实用价值.分享给大家供大家参考之用.具体分析如下: 一般在winform C/S程序中经常会在子线程中更新控件的 ...
- golang类型转换小总结
1. int <--> string 1.1. int --> string str := strconv.Itoa(intVal) 当然,整数转换成字符串还有其他方法,比如 fmt ...
- python基础(6)---set、collections介绍
1.set(集合) set和dict类似,也是一组key的集合,但不存储value.由于key不能重复,所以,在set中,没有重复的key. 集合和我们数学中集合的概念是一样的,也有交集.并集.差集. ...