【题目大意】

在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。试设计出1个算法,计算出将N堆石子合并成1堆的最大得分。

【思路】

设 dp[i][j] 表示第 i 到第 j 堆石子合并的最优值,sum[i][j] 表示第 i 到第 j 堆石子的总数量。

 #include<iostream>
#include<cstdio>
using namespace std;
const int N=;
const int INF=0x7fffffff;
int n;
int a[N],sum[N],dp[N][N],s[N][N]; void f()
{ for (int i=;i<=n;i++) dp[i][i]=,s[i][i]=i;
for (int r=;r<n;r++)
{
for (int i=;i<n;i++)
{
int j=i+r;
if(j>n) break;
dp[i][j]=INF;
for (int k=s[i][j-];k<=s[i+][j];k++)
{
if(dp[i][j]>dp[i][k]+dp[k+][j])
{
dp[i][j]=dp[i][k]+dp[k+][j];
s[i][j]=k;
}
}
dp[i][j]+=sum[j]-sum[i-];
}
}
} int main()
{
while(~scanf("%d",&n))
{
sum[]=;
for (int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
}
f();
printf("%d\n",dp[][n]);
}
return ; }

【四边形不等式】noi95- 合并石子的更多相关文章

  1. 四边形不等式优化_石子合并问题_C++

    在动态规划中,经常遇到形如下式的状态转移方程: m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max) 上述的m(i,j)表示区间[i,j]上的某 ...

  2. 四边形不等式优化DP——石子合并问题 学习笔记

    好方啊马上就要区域赛了连DP都不会QAQ 毛子青<动态规划算法的优化技巧>论文里面提到了一类问题:石子合并. n堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的 ...

  3. <四边形不等式优化>[NOI1995]石子合并

    留个坑 挺套路的 明天来写个总结 #include<cstdio> #include<algorithm> inline int read() { int x = 0,f = ...

  4. 石子合并(四边形不等式优化dp) POJ1160

    该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...

  5. 区间DP石子合并问题 & 四边形不等式优化

    入门区间DP,第一个问题就是线性的规模小的石子合并问题 dp数组的含义是第i堆到第j堆进行合并的最优值 就是说dp[i][j]可以由dp[i][k]和dp[k+1][j]转移过来 状态转移方程 dp[ ...

  6. dp优化-四边形不等式(模板题:合并石子)

    学习博客:https://blog.csdn.net/noiau/article/details/72514812 看了好久,这里整理一下证明 方程形式:dp(i,j)=min(dp(i,k)+dp( ...

  7. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  8. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

  9. 【整理】石子合并问题(四边形不等式DP优化)

    有很多种算法: 1,任意两堆可以合并:贪心+单调队列. 2,相邻两堆可合并:区间DP    (O(n^3)) ). 3,相邻,四边形不等式优化DP (O(n^2) ). 4,相邻,GarsiaWach ...

随机推荐

  1. 【洛谷 P3203】 [HNOI2010]弹飞绵羊(LCT)

    题目链接 把每个点和能跳到的点连边,于是就构成了一个森林. 查询操作就是该点到根的路径长度,修改操作就相当于删边再重新连边. 显然是\(LCT\)的强项. 查询时\(access(x),splay(x ...

  2. Django之ModelForm(一)

    要说ModelForm,那就先说Form吧! 先给出一个Form示例: models.py from django.db import models class UserType(models.Mod ...

  3. 技巧之如何快速使用websocket来监控标准输出

    为啥是Websocket 服务端可以主动推送消息到浏览器端.比如服务端实时在打印日志,这是一个标准输出,可以实时将日志推送到浏览器. 为啥用websocketd (https://github.com ...

  4. 问题解决:The content of the adapter has changed but ListView did not receive a notification

    1. 不要在后台线程中直接调用adapter 2. 不要在后台线程中修改adapter绑定的数据 如果对adapter或者adapter绑定的数据是在线程中,加上runOnUiThread就可以了 r ...

  5. sqlserver如何添加全文索引

    在SQL Server 中提供了一种名为全文索引的技术,可以大大提高从长字符串里搜索数 据的速度,不用在用LIKE这样低效率的模糊查询了.   下面简明的介绍如何使用Sql2008 全文索引 一.检查 ...

  6. php返回json数据函数实例_php技巧_脚本之家

    本文实例讲述了php返回json数据函数的用法,分享给大家供大家参考.具体方法如下: json_encode()函数用法: echo json_encode(array('a'=>'bbbb', ...

  7. css控制单行文本溢出

    1.溢出属性(容器的) overflow:visible/hidden(隐藏)/scroll/auto(自动)/inherit; visible:默认值,内容不会被修剪,会成现在元素框之外: hidd ...

  8. Python 一些 实用的包(持续更新)

    line_profiler:(代码性能分析) 使用方法:链接 codecs:(Python内置的编码库) 数据分析与挖掘领域: 引自博客:这里     因为他有很多这个领域相关的库可以用,而且很好用, ...

  9. beautifulsoup简单用法

    原文地址 http://www.cnblogs.com/yupeng/p/3362031.html 这篇文章讲的也很全 http://www.cnblogs.com/twinsclover/archi ...

  10. 【LOJ】#2280. 「FJOI2017」矩阵填数

    题解 我们发现没有限制的小方格可以随便填 然后考虑有限制的,我们把它切割成一个个小块(枚举相邻的横纵坐标),然后记录一下这个小块的最大值限制(也就是所有覆盖它的矩形最小的最大值) 记录一下每个小块的大 ...