一篇非常好的文章,解释了python基本语法的方方面面:

# Single line comments start with a hash.
""" Multiline strings can be written
using three "'s, and are often used
as comments
""" ####################################################
## 1. Primitive Datatypes and Operators
#################################################### # You have numbers
3 #=> 3 # Math is what you would expect
1 + 1 #=> 2
8 - 1 #=> 7
10 * 2 #=> 20
35 / 5 #=> 7 # Division is a bit tricky. It is integer division and floors the results
# automatically.
5 / 2 #=> 2 # To fix division we need to learn about floats.
2.0 # This is a float
11.0 / 4.0 #=> 2.75 ahhh...much better # Enforce precedence with parentheses
(1 + 3) * 2 #=> 8 # Boolean values are primitives
True
False # negate with not
not True #=> False
not False #=> True # Equality is ==
1 == 1 #=> True
2 == 1 #=> False # Inequality is !=
1 != 1 #=> False
2 != 1 #=> True # More comparisons
1 < 10 #=> True
1 > 10 #=> False
2 <= 2 #=> True
2 >= 2 #=> True # Comparisons can be chained!
1 < 2 < 3 #=> True
2 < 3 < 2 #=> False # Strings are created with " or '
"This is a string."
'This is also a string.' # Strings can be added too!
"Hello " + "world!" #=> "Hello world!" # A string can be treated like a list of characters
"This is a string"[0] #=> 'T' # % can be used to format strings, like this:
"%s can be %s" % ("strings", "interpolated") # A newer way to format strings is the format method.
# This method is the preferred way
"{0} can be {1}".format("strings", "formatted")
# You can use keywords if you don't want to count.
"{name} wants to eat {food}".format(name="Bob", food="lasagna") # None is an object
None #=> None # Don't use the equality "==" symbol to compare objects to None
# Use "is" instead
"etc" is None #=> False
None is None #=> True # The 'is' operator tests for object identity. This isn't
# very useful when dealing with primitive values, but is
# very useful when dealing with objects. # None, 0, and empty strings/lists all evaluate to False.
# All other values are True
0 == False #=> True
"" == False #=> True ####################################################
## 2. Variables and Collections
#################################################### # Python has a print function, available in versions 2.7 and 3...
print("I'm Python. Nice to meet you!")
# and an older print statement, in all 2.x versions but removed from 3.
print "I'm also Python!" # No need to declare variables before assigning to them.
some_var = 5 # Convention is to use lower_case_with_underscores
some_var #=> 5 # Accessing a previously unassigned variable is an exception.
# See Control Flow to learn more about exception handling.
some_other_var # Raises a name error # if can be used as an expression
"yahoo!" if 3 > 2 else 2 #=> "yahoo!" # Lists store sequences
li = []
# You can start with a prefilled list
other_li = [4, 5, 6] # Add stuff to the end of a list with append
li.append(1) #li is now [1]
li.append(2) #li is now [1, 2]
li.append(4) #li is now [1, 2, 4]
li.append(3) #li is now [1, 2, 4, 3]
# Remove from the end with pop
li.pop() #=> 3 and li is now [1, 2, 4]
# Let's put it back
li.append(3) # li is now [1, 2, 4, 3] again. # Access a list like you would any array
li[0] #=> 1
# Look at the last element
li[-1] #=> 3 # Looking out of bounds is an IndexError
li[4] # Raises an IndexError # You can look at ranges with slice syntax.
# (It's a closed/open range for you mathy types.)
li[1:3] #=> [2, 4]
# Omit the beginning
li[2:] #=> [4, 3]
# Omit the end
li[:3] #=> [1, 2, 4] # Remove arbitrary elements from a list with "del"
del li[2] # li is now [1, 2, 3] # You can add lists
li + other_li #=> [1, 2, 3, 4, 5, 6] - Note: li and other_li is left alone # Concatenate lists with "extend()"
li.extend(other_li) # Now li is [1, 2, 3, 4, 5, 6] # Check for existence in a list with "in"
1 in li #=> True # Examine the length with "len()"
len(li) #=> 6 # Tuples are like lists but are immutable.
tup = (1, 2, 3)
tup[0] #=> 1
tup[0] = 3 # Raises a TypeError # You can do all those list thingies on tuples too
len(tup) #=> 3
tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6)
tup[:2] #=> (1, 2)
2 in tup #=> True # You can unpack tuples (or lists) into variables
a, b, c = (1, 2, 3) # a is now 1, b is now 2 and c is now 3
# Tuples are created by default if you leave out the parentheses
d, e, f = 4, 5, 6
# Now look how easy it is to swap two values
e, d = d, e # d is now 5 and e is now 4 # Dictionaries store mappings
empty_dict = {}
# Here is a prefilled dictionary
filled_dict = {"one": 1, "two": 2, "three": 3} # Look up values with []
filled_dict["one"] #=> 1 # Get all keys as a list with "keys()"
filled_dict.keys() #=> ["three", "two", "one"]
# Note - Dictionary key ordering is not guaranteed.
# Your results might not match this exactly. # Get all values as a list with "values()"
filled_dict.values() #=> [3, 2, 1]
# Note - Same as above regarding key ordering. # Check for existence of keys in a dictionary with "in"
"one" in filled_dict #=> True
1 in filled_dict #=> False # Looking up a non-existing key is a KeyError
filled_dict["four"] # KeyError # Use "get()" method to avoid the KeyError
filled_dict.get("one") #=> 1
filled_dict.get("four") #=> None
# The get method supports a default argument when the value is missing
filled_dict.get("one", 4) #=> 1
filled_dict.get("four", 4) #=> 4 # "setdefault()" inserts into a dictionary only if the given key isn't present
filled_dict.setdefault("five", 5) #filled_dict["five"] is set to 5
filled_dict.setdefault("five", 6) #filled_dict["five"] is still 5 # Sets store ... well sets
empty_set = set()
# Initialize a "set()" with a bunch of values
some_set = set([1,2,2,3,4]) # some_set is now set([1, 2, 3, 4]) # Since Python 2.7, {} can be used to declare a set
filled_set = {1, 2, 2, 3, 4} # => {1, 2, 3, 4} # Add more items to a set
filled_set.add(5) # filled_set is now {1, 2, 3, 4, 5} # Do set intersection with &
other_set = {3, 4, 5, 6}
filled_set & other_set #=> {3, 4, 5} # Do set union with |
filled_set | other_set #=> {1, 2, 3, 4, 5, 6} # Do set difference with -
{1,2,3,4} - {2,3,5} #=> {1, 4} # Check for existence in a set with in
2 in filled_set #=> True
10 in filled_set #=> False ####################################################
## 3. Control Flow
#################################################### # Let's just make a variable
some_var = 5 # Here is an if statement. Indentation is significant in python!
# prints "some_var is smaller than 10"
if some_var > 10:
print("some_var is totally bigger than 10.")
elif some_var < 10: # This elif clause is optional.
print("some_var is smaller than 10.")
else: # This is optional too.
print("some_var is indeed 10.") """
For loops iterate over lists
prints:
dog is a mammal
cat is a mammal
mouse is a mammal
"""
for animal in ["dog", "cat", "mouse"]:
# You can use % to interpolate formatted strings
print("%s is a mammal" % animal) """
"range(number)" returns a list of numbers
from zero to the given number
prints:
0
1
2
3
"""
for i in range(4):
print(i) """
While loops go until a condition is no longer met.
prints:
0
1
2
3
"""
x = 0
while x < 4:
print(x)
x += 1 # Shorthand for x = x + 1 # Handle exceptions with a try/except block # Works on Python 2.6 and up:
try:
# Use "raise" to raise an error
raise IndexError("This is an index error")
except IndexError as e:
pass # Pass is just a no-op. Usually you would do recovery here. ####################################################
## 4. Functions
#################################################### # Use "def" to create new functions
def add(x, y):
print("x is %s and y is %s" % (x, y))
return x + y # Return values with a return statement # Calling functions with parameters
add(5, 6) #=> prints out "x is 5 and y is 6" and returns 11 # Another way to call functions is with keyword arguments
add(y=6, x=5) # Keyword arguments can arrive in any order. # You can define functions that take a variable number of
# positional arguments
def varargs(*args):
return args varargs(1, 2, 3) #=> (1,2,3) # You can define functions that take a variable number of
# keyword arguments, as well
def keyword_args(**kwargs):
return kwargs # Let's call it to see what happens
keyword_args(big="foot", loch="ness") #=> {"big": "foot", "loch": "ness"} # You can do both at once, if you like
def all_the_args(*args, **kwargs):
print(args)
print(kwargs)
"""
all_the_args(1, 2, a=3, b=4) prints:
(1, 2)
{"a": 3, "b": 4}
""" # When calling functions, you can do the opposite of args/kwargs!
# Use * to expand tuples and use ** to expand kwargs.
args = (1, 2, 3, 4)
kwargs = {"a": 3, "b": 4}
all_the_args(*args) # equivalent to foo(1, 2, 3, 4)
all_the_args(**kwargs) # equivalent to foo(a=3, b=4)
all_the_args(*args, **kwargs) # equivalent to foo(1, 2, 3, 4, a=3, b=4) # Python has first class functions
def create_adder(x):
def adder(y):
return x + y
return adder add_10 = create_adder(10)
add_10(3) #=> 13 # There are also anonymous functions
(lambda x: x > 2)(3) #=> True # There are built-in higher order functions
map(add_10, [1,2,3]) #=> [11, 12, 13]
filter(lambda x: x > 5, [3, 4, 5, 6, 7]) #=> [6, 7] # We can use list comprehensions for nice maps and filters
[add_10(i) for i in [1, 2, 3]] #=> [11, 12, 13]
[x for x in [3, 4, 5, 6, 7] if x > 5] #=> [6, 7] ####################################################
## 5. Classes
#################################################### # We subclass from object to get a class.
class Human(object): # A class attribute. It is shared by all instances of this class
species = "H. sapiens" # Basic initializer
def __init__(self, name):
# Assign the argument to the instance's name attribute
self.name = name # An instance method. All methods take "self" as the first argument
def say(self, msg):
return "%s: %s" % (self.name, msg) # A class method is shared among all instances
# They are called with the calling class as the first argument
@classmethod
def get_species(cls):
return cls.species # A static method is called without a class or instance reference
@staticmethod
def grunt():
return "*grunt*" # Instantiate a class
i = Human(name="Ian")
print(i.say("hi")) # prints out "Ian: hi" j = Human("Joel")
print(j.say("hello")) #prints out "Joel: hello" # Call our class method
i.get_species() #=> "H. sapiens" # Change the shared attribute
Human.species = "H. neanderthalensis"
i.get_species() #=> "H. neanderthalensis"
j.get_species() #=> "H. neanderthalensis" # Call the static method
Human.grunt() #=> "*grunt*" ####################################################
## 6. Modules
#################################################### # You can import modules
import math
print(math.sqrt(16) )#=> 4 # You can get specific functions from a module
from math import ceil, floor
print(ceil(3.7)) #=> 4.0
print(floor(3.7)) #=> 3.0 # You can import all functions from a module.
# Warning: this is not recommended
from math import * # You can shorten module names
import math as m
math.sqrt(16) == m.sqrt(16) #=> True # Python modules are just ordinary python files. You
# can write your own, and import them. The name of the
# module is the same as the name of the file. # You can find out which functions and attributes
# defines a module.
import math
dir(math)

转自:http://learnxinyminutes.com/docs/python/

Learn X in Y minutes(python一页纸代码)的更多相关文章

  1. Learn clojure in Y minutes

    Learn X in Y minutes Where X=clojure Get the code: learnclojure.clj Clojure is a Lisp family languag ...

  2. Learn X in Y minutes Where X=c++

    http://learnxinyminutes.com/docs/c++/ C++ is a systems programming language that, according to its i ...

  3. Learn Lua in 15 Minutes

    原文地址:http://tylerneylon.com/a/learn-lua/ Learn Lua in 15 Minutes more or less For a more in-depth Lu ...

  4. 十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less))

    十分钟入门less(翻译自:Learn lESS in 10 Minutes(or less)) 注:本文为翻译文章,因翻译水平有限,难免有缺漏不足之处,可查看原文. 我们知道写css代码是非常枯燥的 ...

  5. [Spark][Python]Spark Python 索引页

    Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子

  6. c#代码 天气接口 一分钟搞懂你的博客为什么没人看 看完python这段爬虫代码,java流泪了c#沉默了 图片二进制转换与存入数据库相关 C#7.0--引用返回值和引用局部变量 JS直接调用C#后台方法(ajax调用) Linq To Json SqlServer 递归查询

    天气预报的程序.程序并不难. 看到这个需求第一个想法就是只要找到合适天气预报接口一切都是小意思,说干就干,立马跟学生沟通价格. ​ ​不过谈报价的过程中,差点没让我一口老血喷键盘上,话说我们程序猿的人 ...

  7. Python中用函数实现代码的复用

    # Python中用函数实现代码复用 """ def funcname(paras): statements return [expression] 关于函数定义说明如下 ...

  8. python中执行javascript代码

    python中执行javascript代码: 1.安装相应的库,我使用的是PyV8 2.import PyV8 ctxt = PyV8.JSContext()     ctxt.enter()     ...

  9. Python中文转拼音代码(支持全拼和首字母缩写)

    本文的代码,从https://github.com/cleverdeng/pinyin.py升级得来,针对原文的代码,做了以下升级:     1 2 3 4 1.可以传入参数firstcode:如果为 ...

随机推荐

  1. 现代OpenGL教程 01 - 入门指南

    原文链接传送门 译序 早前学OpenGL的时候还是1.x版本,用的都是glVertex,glNormal等固定管线API.后来工作需要接触DirectX9,shader也只是可选项而已,跟固定管线一起 ...

  2. MYSQL 的 6 个返回时间日期函数

    方法1. curdate(),curtime(),now() 方法2. utc_date(),utc_time(),utc_datetime(); 可以看到utc时间相比东西八区要小8小时 注意. 返 ...

  3. SQL Server dbcc checkdb 做了什么。

    第一步: 读取系统元数据.读完这些数据后dbcc checkdb 就知道自己要检测的是一个怎样的数据库了.如果在这一步就出错了.dbcc 就直接出错 了.不会再运行下去. 第二步: 在dbcc che ...

  4. logstash 分析nginx 错误日志

    [root@dr-mysql01 frontend-error]# cat logstash_error.conf input { file { type => "zj_fronten ...

  5. Search in Rotated Sorted Array I II

    Search in Rotated Sorted Array Suppose a sorted array is rotated at some pivot unknown to you before ...

  6. Android 绘图工具库AChartEngine

    From: http://www.oschina.net/p/achartengine AChartEngine是为android应用而设计的绘图工具库.目前该库的最新稳定版本是0.7,支持绘制以下类 ...

  7. exit()与_exit()的区别

    从图中可以看出,_exit 函数的作用是:直接使进程停止运行,清除其使用的内存空间,并清除其在内核的各种数据结构:exit 函数则在这些基础上做了一些小动作,在执行退出之前还加了若干道工序.exit( ...

  8. Dima and Salad(完全背包)

    Dima and Salad time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  9. 【Quick-COCOS2D-X 3.3 怎样绑定自己定义类至Lua之四】使用绑定C++至Lua的自己定义类

    续[Quick-COCOS2D-X 3.3 怎样绑定自己定义类至Lua之三]动手绑定自己定义类至Lua 之后.我们已经完毕了自己定义类至Lua的绑定.在接下来的环节,我们将使用它. 首先,我们须要确定 ...

  10. mysql 初始化

    一.centos7下mysql 安装配置 yum -y install mariadb* systemctl start mariadb.service systemctl enable mariad ...