CodeForces 242E - XOR on Segment 二维线段树?
今天练习赛的题....又是线段树的变换..拿到题我就敲了个点更新区间查询的..果断超时...然后想到了可以将每个数与合表示成不进位的二进制数..这样就可以区间进行更新了..比赛的时候写搓了..刚重写了一遍过~~
为了表示每位的二进制数...线段树开成二维的...第一维老样子~记是树中哪个点..第二维记当前段之和的不进位二进制数...因为最多到10^5...也就是不会超过2^20...第二维开个20就够了....
区间更新如: 3 3 这段全xor 3...3+3的不进位二进制数为(2,2)...xor 3,3的二进制为(1,1)..将x二进制为1的改为len-原来的...那么(2-2,2-2)=0
2 4 这段全xor 3...2+4的不进位二进制数为(1,1,0).....将x二进制为1的改为len-原来的..那么(1,2-1,2-0)=(1,1,2)=2+2+4=8
不知道这货是不是叫二维线段树.....二维线段树应该是树中有树吧..也就是第一颗树的每个节点又是线段树....
Program:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<algorithm>
#define ll long long
#define oo 1000000007
#define pi acos(-1.0)
#define MAXN 100005
using namespace std;
struct node
{
int a[22];
};
int sum[MAXN<<2][22],col[MAXN<<2][22];
ll h[22];
void PushDown(int len,int now)
{
int i;
for (i=0;i<20;i++)
if (col[now][i])
{
sum[now<<1][i]=(len-(len>>1))-sum[now<<1][i];
sum[(now<<1)|1][i]=(len>>1)-sum[(now<<1)|1][i];
col[now<<1][i]=1-col[now<<1][i];
col[(now<<1)|1][i]=1-col[(now<<1)|1][i];
}
for (i=0;i<20;i++) col[now][i]=0;
return;
}
void update(int L,int R,int x,int l,int r,int now)
{
int i;
if (L<=l && R>=r)
{
for (i=0;i<20;i++)
if (x&(1<<i))
{
sum[now][i]=(r-l+1)-sum[now][i];
col[now][i]=1-col[now][i];
}
return;
}
PushDown(r-l+1,now);
int mid=(l+r)>>1;
if (L<=mid) update(L,R,x,l,mid,now<<1);
if (R>mid) update(L,R,x,mid+1,r,(now<<1)|1);
for (i=0;i<20;i++) sum[now][i]=sum[now<<1][i]+sum[(now<<1)|1][i];
return;
}
node query(int L,int R,int l,int r,int now)
{
int i;
node h;
memset(h.a,0,sizeof(h.a));
if (L<=l && R>=r)
{
for (i=0;i<20;i++) h.a[i]=sum[now][i];
return h;
}
PushDown(r-l+1,now);
int mid=(l+r)>>1;
if (L<=mid)
{
node p=query(L,R,l,mid,now<<1);
for (i=0;i<20;i++) h.a[i]+=p.a[i];
}
if (R>mid)
{
node p=query(L,R,mid+1,r,(now<<1)|1);
for (i=0;i<20;i++) h.a[i]+=p.a[i];
}
return h;
}
int main()
{
int i,n,m;
while (~scanf("%d",&n))
{
memset(sum,0,sizeof(sum));
memset(col,0,sizeof(col));
for (i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
update(i,i,x,1,n,1);
}
scanf("%d",&m);
while (m--)
{
int tp,l,r;
scanf("%d%d%d",&tp,&l,&r);
if (tp==1)
{
ll ans,x;
node h=query(l,r,1,n,1);
ans=0,x=1;
for (i=0;i<20;i++)
{
ans+=x*h.a[i];
x*=2;
}
printf("%I64d\n",ans);
}else
{
int x;
scanf("%d",&x);
update(l,r,x,1,n,1);
}
}
}
return 0;
}
CodeForces 242E - XOR on Segment 二维线段树?的更多相关文章
- CodeForces 242E二维线段树
E. XOR on Seg ...
- Codeforces 453E - Little Pony and Lord Tirek(二维线段树+ODT)
Codeforces 题目传送门 & 洛谷题目传送门 一道难度 *3100 的 DS,而且被我自己搞出来了! 不过我终究还是技不如人,因为这是一个 \(n\log^2n\) + 大常数的辣鸡做 ...
- codeforces 677D D. Vanya and Treasure(二维线段树)
题目链接: D. Vanya and Treasure time limit per test 1.5 seconds memory limit per test 256 megabytes inpu ...
- 【Codeforces Round #433 (Div. 1) C】Boredom(二维线段树)
[链接]我是链接 [题意] 接上一篇文章 [题解] 接(点我进入)上一篇文章. 这里讲一种用类似二维线段树的方法求矩形区域内点的个数的方法. 我们可以把n个正方形用n棵线段树来维护. 第i棵线段树维护 ...
- 【BZOJ4785】[Zjoi2017]树状数组 树套树(二维线段树)
[BZOJ4785][Zjoi2017]树状数组 Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一 ...
- UVA 11297 线段树套线段树(二维线段树)
题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的 ...
- POJ2155 Matrix二维线段树经典题
题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...
- HDU 1823 Luck and Love(二维线段树)
之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...
- poj 2155:Matrix(二维线段树,矩阵取反,好题)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17880 Accepted: 6709 Descripti ...
随机推荐
- C#学习(三)
通过类创建对象的过程称为类的实例化 匿名类型提供了一种方便的方法,可用来将一组只读属性封装到单个对象中,而无需首先显式定义一个类型. 要将匿名类型或包含匿名类型的集合作为参数传递给某一方法,可将参数作 ...
- 小学生之SpringMVC
1. Springmvc是什么? Spring Web MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将web层进行职责解耦,基 ...
- FastReport 动态修改连接字符串
代码如下: Report rp = new Report(); rp.Load(@"Print\aa.frx"); rp.Dictionary.Connections[0].Con ...
- HBuilder开发app ajax跨域 解决XMLHttpRequest
<div id="a1" onclick="testXHR()" style="font-size: 5em;">sss1< ...
- Js实现简单的联动,无数据库版本
<html> <head> <title></title> <script language="javascript" typ ...
- smarty半小时快速上手教程(转)
来源于:http://www.chinaz.com/program/2010/0224/107006.shtml 一:smarty的程序设计部分: 在smarty的模板设计部分我简单的把smarty在 ...
- 微软分布式缓存 appfabric
appfabric为微软自家产的分布式缓存解决方案,随dotnet4.0一起发布.目前版本为1.1
- zepto源码研究 - zepto.js - 5(dom属性管理)
index: $.fn = {...... indexOf: emptyArray.indexOf,} index: function(element){ //这里的$(element)[0]是为了将 ...
- Struts2 模型驱动及页面回显
* 要从页面中获取表单元素的值,需要在动作类中声明与页面元素同名的属性.导致动作类中既有javabean又有业务方法. * 将javabean和业务方法进行分离: * 将重 ...
- 1.1 语言与平台 [Java]
Java语言是静态类型.面向对象的语言: Java平台是提供运行时环境的软件: 生产和使用Java代码的整个过程:.java (javac) .class (类加载器) 转换后的.class (解释器 ...