经典的最长公共子序列问题。

状态转移方程为 :

if(x[i] == Y[j]) dp[i, j] = dp[i - 1, j - 1] +1
else dp[i, j] = max(dp[i - 1], j, dp[i, j - 1]);

设有字符串X和字符串Y,dp[i, j]表示的是X的前i个字符与Y的前j个字符的最长公共子序列长度。

如果X[i] == Y[j] ,那么这个字符与之前的LCS 一定可以构成一个新的LCS;

如果X[i] != Y[j] ,则分别考察 dp[i  -1][j], 和dp[i, j - 1],选择其中的较大者为LCS。

Source code:

//#pragma comment(linker, "/STACK:16777216") //for c++ Compiler
#include <stdio.h>
#include <iostream>
#include <cstring>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <algorithm>
#define ll long long
#define Max(a,b) (((a) > (b)) ? (a) : (b))
#define Min(a,b) (((a) < (b)) ? (a) : (b))
#define Abs(x) (((x) > 0) ? (x) : (-(x))) using namespace std; const int INF = 0x3f3f3f3f;
const int MAXN = ; int dp[MAXN][MAXN]; int main(){
int i, j, t, k, n, m;
int len1, len2;
string str1, str2;
while(cin >> str1 >> str2){
memset(dp, , sizeof(dp));
len1 = str1.length();
len2 = str2.length();
for(i = ; i <= len1; ++i){
for(j = ; j <= len2; ++j){
if(str1[i - ] == str2[j - ]){
dp[i][j] = dp[i - ][j - ] + ;
}
else{
dp[i][j] = Max(dp[i - ][j], dp[i][j - ]);
}
}
}
cout << dp[len1][len2] << endl;
}
return ;
}

POJ 1458 最长公共子序列 LCS的更多相关文章

  1. POJ 1458 最长公共子序列(dp)

    POJ 1458 最长公共子序列 题目大意:给出两个字符串,求出这样的一 个最长的公共子序列的长度:子序列 中的每个字符都能在两个原串中找到, 而且每个字符的先后顺序和原串中的 先后顺序一致. Sam ...

  2. 【简单dp】poj 1458 最长公共子序列【O(n^2)】【模板】

    最长公共子序列可以用在下面的问题时:给你一个字符串,请问最少还需要添加多少个字符就可以让它编程一个回文串? 解法:ans=strlen(原串)-LCS(原串,反串); Sample Input abc ...

  3. POJ 1458 最长公共子序列

    子序列就是子序列中的元素是母序列的子集,且子序列中元素的相对顺序和母序列相同. 题目要求便是寻找两个字符串的最长公共子序列. dp[i][j]表示字符串s1左i个字符和s2左j个字符的公共子序列的最大 ...

  4. Common Subsequence POJ - 1458 最长公共子序列 线性DP

    #include <iostream> #include <algorithm> #include <string> #include <cstring> ...

  5. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  6. 1006 最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...

  7. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  8. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  9. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

随机推荐

  1. [LeetCode]题解(python):085-Maximal Rectangle

    题目来源: https://leetcode.com/problems/maximal-rectangle/ 题意分析: 给定一个二维的二进制矩阵,也就是只包括0 和 1的,找出只包括1的最大的矩阵的 ...

  2. 数组length属性的一些特性

    ~~·数组的length属性是可读写的 var colors = ["blue","red","green"];colors.length ...

  3. Windows 8.1 IIS 8.5 远程管理 Windows 2008 R2 IIS 7.0

    案例: Windows 8.1 x64 IIS 8.5 inetmgr_amd64_v1.1_en-US.msi Windows 2008 R2  x64 IIS  7.0 在Win8.1 通过IIS ...

  4. 第一讲 一个简单的Qt程序分析

    本文概要:通过一个简单的Qt程序来介绍Qt程序编写的基本框架与一些Qt程序中常见的概念 #include <QApplication> #include <QPushButton&g ...

  5. hdu1711(终于搞懂了KMP算法了。。)

    题意:给你两个长度分别为n(1 <= N <= 1000000)和m(1 <= M <= 10000)的序列a[]和b[],求b[]序列在a[]序列中出现的首位置.如果没有请输 ...

  6. 各浏览器对 window.open() 的窗口特征 sFeatures 参数支持程度存在差异

    标准参考 无. 问题描述 使用 window.open 方法可以弹出一个新窗口,其中 open 方法的 sFeatures 参数选项在各浏览器中支持程度不一,这有可能导致同样的代码使各浏览器中弹出窗口 ...

  7. Java 使用Dom4j和JFileChooser实现xml文件的自主选择路径导出

    直接来个简单的例子,大家一看便知. Document doc=DocumentHelper.createDocument();//创建document Element rootElement=doc. ...

  8. [Swust OJ 767]--将军回家(Dijkstra算法)

    题目链接:http://acm.swust.edu.cn/problem/767/ Time limit(ms): 1000 Memory limit(kb): 65535   Description ...

  9. C#调用C/C++动态库 封送结构体,结构体数组

    因为实验室图像处理的算法都是在OpenCV下写的,还有就是导航的算法也是用C++写的,然后界面部分要求在C#下写,所以不管是Socket通信,还是调用OpenCV的DLL模块,都设计到了C#和C++数 ...

  10. 使用python操作RabbitMQ,Redis,Memcache,SQLAlchemy 其一

    一.概念 1.Memcached     Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态 ...