基于visual Studio2013解决C语言竞赛题之0204实数求值
题目
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiEAAAAsCAYAAACzFmhwAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAm0SURBVHhe7Z2Bbt42DISbvXjRJ996QA84cKRIyf5/J819AGGJIo+UHMBC03Uf//7mhzHGGGPMm/nnz9MYY4wx5q34EmKMMcaYR/AlxBhjjDGP4EuIMcYYYx7hsUvIx8fHn9H/Wa0p07hX8Oralf5u3ZM+76pxUrsjat5Vo9M5rXOSt5vD+NM8ZaqBuN16O1B/YpGpL+NK7hToTW1Ft54x0Y1U8Sf1V7C3ia3o1jMmupEsfqXBGhNb0a1f5aT+KqfVe+q/jkFjWWn6q/XINO5uurpYz+DeIlEr6q/0OrpeM7ocXZ+M7yJqrmpgLSOL73rV9So28099kUkM0djTPLLKxxqZ1riT6d5296Vcyb3CaY1JHmLItEbUzepUtbVexWkfUyZ52uddNaZ1s5hJLtmJPWG3x86/6nd0CVkJnAA9hdqxzqTu3b1NYM3d2lWezmPMKjYD61Oovwvrxx5jb3F+lUpvx7+rQeL6VLvzYbxL1wfIdO/IAzE3ywGZ/hWqniNZ3KRH5lWxyrv3Nukpkp1B3G8Gz2CSH2OUar3LUyY1dol6sUalGWOyvrLcrh7J/FUvKzLtE2I/q74Vxozzfzv/7w1UyVcYNziofdof8sg0f9p3BmM7DcwJ/epTYm3VirogqxVjVjAezwqtr+zUyah63fGrLxvjuUumRzpftr4ixk+1YlwEa1n+xDfN26WrU9V4ddwddLW7mic9TWrQt1ojWYwy0Yh0NU5qdkxqqA/jCNa6PJL5QOVXJjFXgP4U7SP2tbPH9u+E7DQ1pWoYz2j03w21aZMazFFWuad9s4bWwlj9Oo+gLmtznPlA1KCfxHnsQVEf8nQeY3ehXgb8sU8Cv1oHe47WrV1l0lvkJIfE/qG12gvPjzV1/CrQz06N2B+fq32RWIdaqqPzq+zu7ZTYt453mZzjVb7KuaBPGkDuO87n1eieOFZTP4l755xnqka/sryEMOlVsBnWwDMa/RXVxu4mnoXWq+qrP+ZXIE5z+Iz+6FNQh7U4znwZ8GeaGYhTzWneLlqnIqsPn/an8xU7+4/Ap1b5yKQfhfHQ2c1d0Wlhnabzp8j2H/vTZzx3pTpL6qm9gzvfbexdx++G7wDP1fuo+MznciX3b4HvNJ6pGv1KeQm584VnsGF9qilxfgfcG+tVe+3WCdYZ28FYELUx5lyfK1vBnmgVutZpAsTHOMxZh+OrqNbKwF01JzpYR5yCebSVf4rukexqTJns+51U+9zdP+Kr3istnrvanVzdW9YfLKPyvxPsi7biK5/Lqo72ofPKX6Exak/C+vpUU+L8kf9EV38Q9QdL/SA2G8G66nTxGaxZ5XJ9QhZL7akGYC/aE8aZrWA/0TLg7/QU6iBHNVc1TqCW6nKsPsJ5PCOd0zdFNfiMde+GfbLW3fVUX0Gd6MuYxJyival1ax36szGB5652ldg3rVvLOOlvpfcqYk3MY6/ca7RuLSOeSayVsdLLqPpArUwr9qLzyl+hMV3sO9AetJfYW3XG6SUEwZr8LrKX+reC8+3OmTEEc7UVPMvKMqIm4qo6qsMx55+BeE5x3sE47Ek1dK7s7j2Lh4+GGrRXcKLPvgCe2R7uQHtT69Ym6B46+C7UrhL7pnVrV0Df1MFzdx9ZvGreAfcarVu7wpVzubOPzwL2T4vzyr9iEgPSSwhfiIpMxE5Q3Z2XirwYy74nvGo/Efa505fuS8dYU1vBPDzV6CNRU61aB1FPNaeo3mcEvcV9Yf6qnnmOJ2d5J9P6O31+hvecvc8VfBdqGe/e2+4+Iju5Xa1q75qHJ+Ou9r7iqvZdfX22/SGP578C2rQ4r/wRrVPFRMpfx8RCmdh0cxHNU91Tva8I9om97+yX74PWEfVZU1E9Na7xGddA1ztis5qnnGitclZaXV6391fwRE3SnT3W1SLvPjOtxZ5W/WcwTy3jqZ+HCejr9L1Vueqf7p1xq17eSdcL1tXuoqv7GdjtUc9I89S/ov07IRSZiE1Bo9kmK38EvVRx8E96ZRxtUneXSndVb9WH9guLZLqYM36lrWgs8zOwdqJPduJP9E+Y7kX3/R2YnIdaxSvPS9+d9tD1VME8tRXv+Fng/qZ0sbq3GJvlTupnMfS96ozeeS5PsLs/5dX9V2dU+SPtJYRCV4qckmlPXgbWJz/s7L/TuwPWiP1jPOkVsFdaB3RZD8Z5hcYrzM2gP4uh1io31sqYxkVO8hA/zYmxqBdt5X+SO3vJzmvqu5P4Pt7JO+riXd1ZJ9OiL67xZ6XK4c9RjIl5jGX8HcSaV8m0oo972NnHaZ9X97eTf7XWikr3sf93DNANc4wn0DHgfKfd3fgdOu1sfZUT11ZzjIn64rrmK3G9iyeTGozRWNDNK1ZxWAPZepaXxdMHKh1S9XHCqr8VWQ59nWYVt8qLfpDFv4O76lZ7oz7XV9y9/25vk3VwRSNjogui9rQfcKXnyTq4ohGJ8Vl+rDupUems8mKdyKQuOe2R6BrHeAIdA9V49BJijDHGmO9L++sYY4wxxphX4EuIMcYYYx7BlxBjjDHGPIIvIcYYY4x5BF9CjDHGGPMIvoQYY4wx5hF8CTHGGGPMI/gSYowxxphH8CXEGGOMMY/wqS4h+s+6TkB8llP5I7v1yG7eaR2yk5/FXq1vjDHGvILHLiHTD2OMw5yGf3Ge/+p85Z+CvIzKH+ny8czMGGOM+a58yV/HVJeMk8sHQd7dlwLqsS81+juggbhJbxqrxrXoM8YYY57kW/ydkPgBpsU1nV8FGrxwRD2udWhcplPBurTKZ4wxxjzJl7yE4GOs1hE/wLRu7QqqgbH2O9HP4qiTEf2sRX+cv4Jfv379GRljjDE9j15C9MPIj2Pmi+BjTFNirubreEUWp3pcz3wZXNeeJzm6N41lvhLjCeupGWOMMZ+Fxy4h1Qey8k/Q+JiL8erDD7KPOXXUVn4AHVpcA/RpHNCcFZrLeQZj1O7Ef/JhjDHmCt/i74Rk8IOsz+7jPwU6tBUxbpJDJrGMUbsLX0CMMcZc5eP3h+m+L9OQ6oM/8fPSoGAtxmQ6hOvxGbnqx7wj04lU9SIat6pd9Q4mdaoLyM+fP/+MjDHGmJ4veQk5jQFVXJZT6Uz9VRzp1slJXJWT+Sd5EV5EfPEwxhhzyrf6dczqAws/1v8msJ9od+HLhzHGmKt8iz8JwRzEvExLY7N1MPVXcaRbJydxVc7KDyZ1jDHGmDt47BKyC9vMPqLRV31oI13clT7BJP+OPonGVTlTLWOMMebVPHIJ2YUfzuwDOvUpWCd3bj/WnfQxqb8bh2fHRM8YY4x5JV/iEmKMMcaYv40fP/4D7dvyr+GfRakAAAAASUVORK5CYII=" alt="" />
解决代码及点评
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void main()
{
double a,b,c;
printf("please input a,b,c like a,b,c\n");
scanf_s("%lf,%lf,%lf",&a,&b,&c); // 通过scanf_s让用户键盘输入值
printf("和为:%.2lf\n",a+b+c); // 通过printf去输出各种结算的结果
printf("平均值为:%.2lf\n",(a+b+c)/3); // 平均值
printf("平方和为:%.2lf\n",a*a+b*b+c*c); // 平方和
printf("平方和开方为:%.2lf\n",sqrt((a*a+b*b+c*c))); // 平方和的开方,注意sqrt是math库的一个函数 system("pause");
}
代码下载及其运行
代码下载链接:
http://download.csdn.net/detail/yincheng01/6640521
解压密码为c.itcast.cn
下载解压后用VS2013打开工程文件 0201.vcxproj
点击 “本地Windows调试器” 执行
程序运行结果
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACGrSURBVHhe7d0NnF1lfSfw/+SNAIIklrzS7tpalZJAIBB5kRcJEJBEsFoV3wD1Q2tta3kRlVbrLhWFAkLrlrYrNlJBsV3drgrKa7CAUnmHWGuX7bItIS+EFxFIQiaz5zn3nDt3JvfeeUvmSeX7Hf/cc57nPOc859yR++PcmTs9vb29fdHi5JNPrpYAAGD7+NrXvlYtNTRDaQqjPT098YajF8fhRy2JGTNmlhsAAMC2snHDz2LlQ/fGF6+8Mvr6+prhtGfLli19J510UkybNj0+9OFz4/mYUnYAAMD2Mnv3KXHB+Z+Mp556sgymPbfffnvfRRddFH/wR5+J53t2qjYDAIDta/Zuk+Pcs383rr322uhZtmxZ3yGHHB6HHv/rVTcAAIyP1T+5L66++qpGKP2j8/8knuubXHUBAMD4eO0vzogPnP7ORij9wl9fEz/+93VVFwAAjI/X7rVnGUonVOvRo5RSSiml1DhXrXmn9CePPVE1AQDA+Hj13F8Y+Pb9v6xaX3UBAMD4+NU5rxgYSv/3409WXQAAPx+ee/a5+Mk//2s89dSzVcv2N23abvHq17wydt1t13LdHBpz6ORVs6ePLJTe9PdfqZZG5pdfMz/+86t/LSZMaP74KgDAuLjzH+6NBfv+SsyY+YqqZftbu2Z93P/gI3Ho4QeU6+bQmEMnW4XSR1Y/VXW11/PcmmqpvQk9PdEzoSf6+qL8k1GpkhtuvDlev+Tk2HnnXcp1AIDxcvMNd8bSE18fT/70+apl+5u++y7xrW/fHouPO7RcN4fGHDr5lVnTBv32fQqVXWq/BQu61vz99ot58/eN+fvuG/sWy3V7qQio7fa5w9UTN8d/O+/i+N4Tbfq2d7Uee0eZR7v+Mde6+N6fnRV/96N2fUoppdS2r/LG2ThWu+PtqHOofwW+f73qa/dV9qXNWx+rMfVXtZ5quOdca94p/de1z1RN7R346lmx4raV8Ze3/SQmTNoSEyb3xYQpvTGxqAvfckxMnz6t2rJh8VnXxs2Xvj0+e/HlcfiSk2OXXV9W9dTWxm2XXxA3PF6tlhbGuz77nvi1aq3fQ/G3H7s+Zpx9bhy5Z9VU2nofC957WfzG1jsYnnU3xp9dcl/su9VxtqUO59J67BiPeXTQnMcJsfaS4V3zzs9bO43xa48dw/PUVqfvkST1XRn3l8tz4rjWbcrz/XasrlYHfv90GVerxsfx58XvHjWjagRgR3HTd++IZcuOGPc7hN/85vfimCWHlevDncOdK1bEvT+4q1rr7ICDXxeHHnVUtdZexzk881yxlt7N7g+DDX3FV098/7Y0h3+s2tKxFsWhRxwVd952W9x7V//cyjkceWT5DnkjVzbeIe/rS0GzsTp9j10HzKGTV854+cjulNZTnz1z55gza5eipsactDxj56qns7b7S1X0LXjv5XHBhVW9N+Lqj/1+/O1Wd9H2jTccX0SElesGtRdVhIUl51Tjz1kaa666aPR3+WYcF7934UfjqBlt+oZV6+J7l7ebf2t1OJfWY495HmOo5rG7XfPhPm8dqvFd0b5v1NVpvuk5uTLWHP8H1Vxnxw2X/E38U9n3cPztNT1xSn0e5fdP3ddtXMu+r7kvemaXZ9PSrpRSakeqFHYmTpgwbpWON5o5pEB67TV/PmSl7dqNb61Oc2gsTxj0mO5qTizvbKZA+nfX/mWz0vr3v9cIpAPb72qMm1DvP+2rOG69Xjy2m0O7qqXtS2ki3eq5DZvK7abtMTn+z5Or45/W/b/48ROPxj+v/79le5Iycv2zpHvO7/8LUe32V8y1mEhjss22eafGZ1uCQev2M+cdEPHgA7F+QHu1j+KrXC8C1TEHrIoHV65t2WY8q805tan257LjVddr3trW5XnbuoZ3jUZTbee77oF48PED45ijZzbW5x0fx8+5J1YWAXpCEWTfceZxMbPedsZ+sd+cx+OJdUONa9T6FX8dDy44PY4pQmnxLdhsV0opteNUqXhMS+NW1XEHzKGQZtHtayRax7X/amidQwqKPUVgTfNrPKa5NsJk43V5Qiw85OB469t/M7Zs2VLW175yRdxTBND0WLel/rRdub8URMswWlfjeOU+04t+oZ5Dp6o1Q2ljol2q2u6uR/8lNk9+PibvvDkmT30xJhWVpFu+aZv6iZj1n/6tfEza7q8+crH9gPZZKRjcHQ+nu25P3BiXn3thrEh3PlN7fCtuSe0D9lEcr3V81dQzYU2suOz34tofPRTXnvt78bHLbownym2q9WZdFT+qx5bHa1kftO3lK9ZU7e36bizWPx3fWRVx35eKtup4T6y4sLlN81jtzqX12APmkY5TXIMVV7Ucq9M8qu2a59rh+KnKY9Tt6Tq1tneZ53Cet7Kt07Wrxw/sb3v8duvdzrftdV0djx+wf8xrjp8VM2ZFrF7Xeg3rWhtrVs0p+ovlocYV87rmgYXxrsWzWr7n6m1bq/11aDwv/ef1o68W/V99qOsYpZRSI6/Gv6LTDbO0PD7Vlx7SUusc0nJ67exSrd7+zt/eqlq1G99axT8a27XMIZlYtJfhsXqcWPSlKkNq8Xj40UfHgYceEm875YPR29tb1le+/PnmcmpP/Wm78u5qtf86YDbCaCOc1uo5dKpafygtd9S5in+U2zXD6E4vFo+bYvJOjTuoLfssXXb0hdVSp30Xk250dm1vLKbl2XH0koPivgcfrNb7t22ur7sxbrx3biyYP7vZd9/y+2PfSz4fF529JGb0PBhfPee/x+o3fiIuSm2pTu+Jq84pwkG1j2Jv1f7SttfFrI9W213yiVhw/6fjqyvrvoH7OXPxkjil2OaEORH7n160peMV87n6ujlxan2sS06LeeW+251L67Fbl4vFeCy+s3r/xj4++qaI65bHinWprzGPSMcr9/++6Ln/7v6xHY+/Nlbc1BPvrttPL+ayvN016HzNi4WWtsHt3a7doOel6/EHrw9xvm3m+8Taxg+/1utllS3FPFrbivrRNek5PaG8Rt3HFdfvy9+MWUvS91Rre8u2ZXW+DjMWfzxOPeDuuPGWtdGz8qq4avWb4iPv2q/rmK33r5RSaqgq/lEEnyI8Texed6xYEZddcMGQlbZrN35AFa915XFb55Be/8rg17mS9evXl5Wc9YlPNCtp7Ws3fnC1nUPxWN/VLENhvU2xeR1Wjzh6cRxUBM9T3v078dRTTzUrraf2wxcXgbQKlP376q9m26Dr0KlqjStQaLdRa9XSndHJdSCdsimmTNlYtvdt2VI+ttVmf/U+27fPjVnpbtXMJXHWpefF0TOrvvn7xwH33h8rB2z7WFx/4e/EuWcXdeE9seDj/dsnB7yvDmJFrbw/7pvzpnjPMbOa43vmn1AEyR/GQ+lFv74a9bat+z77/Lh+VcTqtSlEtNlPVY3h1frMWTE7fhhfOvszcevgn3MdfC6tx25dTlVcjxOWLGgsz1wQC4rgm/4roJ7HsfOr7XpmxdHHH1QNTdt2On6x3buXRM8tn2mc21//sBxTdGx97LbXvNr/oGo+b92uXbndoOel03OQavBz0u18Uw2a74xZxcWq+6oqU+SgtpXX/E58qeeMOKt6TruNe+KWL8b1s8+Id1bzaLe/soa4DvPefUbMvu784vqvihNOrQLuEGOUUkqNrJLqoasf3nnngJ+Z7FRpuyFVx2udQ2pLS90q2bhxY1nJpeef36ykta/d+NaqDZhDoREaU1sKoBPL9bKt+pnSnokT4vZbbynO8/vxuYv/sHnMVGk9td9xy63FPortUygtxpTj6pBaLqdA2nLM1NalavVLftuNWqtWhtEykG4s75JOmtJ4+/7Bh1fGgw89XFb6sdINxeRfeOGFsq/d/hpVdg5sW3l9XN9zYMxv+0s+C2K/hT9s3F1qts2NN378z+Piz6X6g1g8YNzg/TfWB7alKsJUCrLlV8p7qa1YmHtSnFvut7/OLkNLp/1U45rLC+Kd5bgPRM9VH4qPnHVB3Fre4Wz0DTiX1mO3LheVlG3VempqrKeOtDKwr7+tw/HX3RCfO+tD8eWeDzTO6+MnRSPnFn3lV/+x21/zxjH614sa8LwV/R2vXdVfj2tW1Tb4+APWG9uU2zVrcNvg+Rb9q9fEumb/2li3OmL2rP7/oPjR1R+KL8VvxsXvroJ/WZ3G9cTD9z8Wcc9fFdczXdNi7D0Rj3/7v8ZHrh5457v43xDXIW3QUKwNe4xSSqkRVPGv1fK3XdJCtyo88sgjQ1ap3fiWai62zCFVsdK9Cps2bSrrwgvO3arqvlK78QOq/F+x2JhDLd3BLFJjI1CWVd3VrELlP9x0S/zjHXcOON6Z5/xxczm1p/7v3Xxz8drcCLSNUFtVudzYb615HTpUbdihNB1g1apH4oxfWhrvm31ynLrnb8S79jgl3vGy91R76Nf4uYP0w7CNX3pqt7+yUl/6qtcfXh7nXLkqTjz1+PKXT3rWfTcuPfPTLUGuJ+YtOSnivvv7w8JI9j//gFj42N/Hl29uCVgPXx/XRRGmyrur5WzTDpvb3vxwtV1RK7+8vHEHbqu+B+LWep+txyzmf2u5zaxY/JFPxYlzH4s1a6u+ogaeS8uxBy2n1XpMWfX6VvNYG7d+p3HXs1zvdPy1j8eqIvjUd3rXPXR3rGp77Ea1vebpq14f/Lx1u3apivH33v9As2/dzV+I6x5bFPuVdx7T8VfF2uo5HzC3oc63qgHznX9inBgtY8rn+6Tqbmsx/uLfju/O/lRc8p7WQFpUx3HpWl4Rl1zWX6cvjJiztNpH6/fsENdh5Zf/MlYX4z66NOK6q75bzXeIa6eUUmpElUwswlK731BvreTFF18cspJ241urfPu+0DqHRmCrg2D7Stodc3Al7ca3VjrnpHktiuU0tzJAFv2prfGY7mpW854wsQicd8Qf/5czm8f66HkXxesOP6x8rNtS/z/efkd5To27o1UQrY5Vh9PyeK1z6FC15ueUrn62cTu4k196xa6xx67FCRYH7930YkycNLFYnlz09Ebf5s2xaXP6zfuIzb2bo3fLlnISaXKX/ukVcezJ74hdt/qc0tVx80Wfim8/Vq0mc0+Oj517fDQ/7XHNd+LiC+6O/c/7w1g8s2orx30h4tTU1rpcdTc19r/6+L+Id+1bNZXuj6s//BdxT7UWsSjed/n7Yl5aLI+3Ko4fsP4/i1DUsPD9Lfsa0Ne/j7U3/XF89pv/3jyXtX/zW/HF9GOPyYG/FZcWwaVfy/yj5dgD5pHm+62Y1bwGg855wDz2ihOXzYlv3zuneR0fbnv8xrWpr/2cAxdFFNtsfexa6zEHji0Nft6SjteuMX717EVxz93156C1PAeF5jUsDJhbahjifBu6XaOWYz34xTjryv7PYmso9llf607jBknX+DtFsD2nCPmNMS3fsx2uQ/m8PF5ft+qazq6enw5jABi56765It580lHx9HPVHcYObrvpxjJoDWXR6w+LI485tlprb49dp8Q3/n5FvHFZ47NEd6Q5PLuhCGwDNG4gFpGwXLrthhviB/9we6Op8LrDXx9vOO64WDGo/eCi/ciivYyUaWB/tmzabeqkAXPoZNZuOw38M6Nrftb9Qn3jb/4qRd1qbWuTJ08quifGi5s2Nk8vmf2Lr4z9Djo0dt5l2/2Z0bU3nh+feXxZfO69rQFvGyjCwJ98elWc8Kftw8f20DyXJau3zbGLoHXm9XPi4x8dFBLHaLtd87HqcL477HwBGFff/l+3xlvefHQ883zjDuN4ePkuk+N/fOOWOPFNbyjXd6Q5/PSF1jmkXNea2hp6yoDa2l7nv6KtHFJtke509jW2bG6RsmL18aC77zxwDp3MfNmUkX14/rJTTo8lv/7OjnX0srfFG5a+JY4b1L5g0WExdeed2+5ztDXzuDfFgXffGw+36RtLrXvoh7Fq7pzGW9DjVPW53DyqY6+Jmy/8Yst1eCCu/sJdMWfh/tv8HLbXNR9ZDf98d4z5KqWU2iEqvZU8cfyq/kWfHXEOjeX0mKo1/6UxjbfeU8JsbNtoa2xXbZu+qobin43Har1uK9/WT8vt5tCmas07peueH3w79yXkwS/Eh/8q/ems18UHPv+BmN9oHR9jPfaa6+Oi878e9bvpc086P849dla19nPopXa+AIzJLTfeGQce8NqYPXtbvn/Y3eOPr4277/1xHH3soeW6OTTm0Mmeu0wa+Pb9E8/3Vl0AAD8ffvbs8/GD798XL7ywoWrZ/nbeeWocfMj+8bLdGj+6aA7df4TzF3aZODCUrn+hy+eMAgDAdvCKnScM/JnS8ocAlFJKKaWUGs+qNO+UPrlh69++AgCA7Wn61J7G2/dLly7tu3L5VzqG0rtu+nq1BAAAI3fqqafGjx97tlobKIXS9592yvBC6V13pd8OBwCAkTnvvPNir7322nah9IorrqhaAAB4KdiwYUOsW7cuJk2aFFOmTCn/fGir9DmjfX19Az5vNKk/gzSN37hx47BC6cA9AwBABkIpAADZCaUAAGS3TUPpihUrBtR/VP/R5z8aO8Lz1jqHbvNo1z+ccTnt6PMDgNy2aSg96qijymL0coWWHeF5G8v3z47+fef/FwDQnbfv2xhLOBoLd9GGJ9fzAwAMNHHixPK38tPjWA37I6He/va3l+spDLSGp3bhoO4f3Dc4dI13/1C6jR/cl7TrT22t29bbtPYnndYHaz3GUAbvYyRjk3ZzGM/j1wZfm9pQ+x88rtN6baTz29bjk5HsY6zHB4CR6vaRUCmIpjr44IPjBz/4QWzZsiV6e3vLvu36kVCtL+xpuXV9OOrtuo2t+9r1DzV+OPsfSuvYTjrtv7Wt0zbd1Nsn9fjWtuEYPG6k518bzT7q7bbF8Ttp3fdQWueTbIv51WNHO742mn1si/kDwLZSB9K99947pk6dGmeccUYZWMdyx3Tc375PL6SdXkzrvnb9g1+IW1+cW3Ua/1JQn/uOcP6dnp/xUJ//tv7+qMeOdvy2lPP6AvDSVgfSefPmxT777BPHHHNM7L///nH55ZePKZiOeyitX0wHv6jWL/SD21vVfd2CQb1NXS8Vw7l+LxX1+bf7Hqmvz0ivk+sLAA0pdJ522mnxtre9Ld761rfGQQcdVIbTQw45JG677bat/urTcI17KK11C5bttG5fh4Ju40e6/x3N9pp/vd/R7nu448dyjG1hqO+R7TW/er+j3fdwx4/lGAAwFunnRpcvXx6f/OQn4x3veEcsWbIkjjjiiFi0aFEceeSR5c+WjsaI/vZ9uxfB1rtGnV4kOwWEwXecWvtTX70+mvHJ4P6hDB5f6zaX1mO0G9+pv90+k8HbjMRY9t+6bbc5DLcvGdw/lMHja/V+uvW3m1fd1mn8WObXeszW/bSbR9K6badtkuH2JYP7AWBbG8+/fT+qUOrFsL0d/fqMdX6e/+5cXwB+3oxnKB322/f1C2bSukzDf4Trk8LOWALPWMf/vHN9AWD0hh1K6xdML5ztuT4AAKOX7RedAACgJpQCAJDdiH7RCQCAl470i0oPPfRQPProo7F+/fqqtV+nX3TaY4894lWvelX5C07b5bfvAQB46Uih9Fvf+lb59+2nT59etUYZRJPUnz6WtK9vS9mWPsN006ZN8fTTz8Qjj/xLHH744dv+t+8BAHjpSR8JVQfSFDw3b+6NFzdvLsLni/H88xviueeei2d/9lw888yzse6J9fFv/76q/KtPq9esLscMl1AKAEBXKYymSn+tqazeLdVd0Rdj48ZN5d3QVC+8sKHZN1JCKQAAQ2qE0v5g2luEz829m2Pz5s3xYhFOU0DtK/rrADtSQikAANkJpQAAZCeUAgCQnVAKAEB2QikAAMOSPuppypQpsdNOU2Lq1J1i9912i5e/fPeYNm2PmD59WrzsZbtWW46cUAoAwLBMmDAhlhx3bPz+hz8cn7ng03H5ZZfG5//s8vjG1/8uHrj/niKoTq22HDmhFACAYdtnn33iiCOOiEMOPbRZ8+bPjzlz51ZbjI5QCgDAsKTPJ730c5fFr7/lLXHUUW+IRYsOjoULD4pf/dXXxJ57zir/7OhoCaUAAAyLt+8BANghePseAICsvH0PAEB23r4HAGCHsGTJkli2bFkcVzzWteh1r4tX/vIvV1uMjlAKAMCwpLfvzzr7nFh8zDGxcOGBsffe+8SrX/3amDv3F2P33ad5+x4AgO2vt7c3Nm3aFBs3bioC6Mb46bPPxjPP/DSeeurpePLJp+JnP3uu2nLkhFIAALITSgEAyE4oBQAgO6EUAIDshFIAALITSgEAGFJfX19Z6WOhUvX1FY+9jeVG9caW1FbUaAilAAB0lcJobxFAN2/eXH4sVFpurL/YqN7Nzb607WgIpQAAdDRt2rR4+umno6enCI4TJsTEiRNi0qSJMXnypNhll51j1113jd13363Y7uXxC6+YHjNn7Fl+lukeL9+j2sPw9CxdurTvyuVfiSc3tE+1d9309bjrrrviiiuuqFoAAHgpSH+h6b777otHH3001j+5vmodWgqkM2bMiP322y82btwYe+21V/z4sWer3oGmT+2J9592ilAKAEB7KZSuW7cuJk2aFFOmTCnvlLbq6ekp365Pj63Seqo0frih1Nv3AABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCADBsEydOjClTppQ1efLk5mNdqX80hFIAAIYthc7DDjssFixYUNbChQtjyZIlceaZZ8YVV1wREyaMLl4KpQAADFtvb2/ccccdZSA99NBD481vfnN88IMfjFNOOaV83LJlS7XlyAilAAAMWwqlqZYvXx4zZswow+lrXvOaWLRoURlIU99oCKUAAHTV09MzoFL4TPWpT32qfDt/7733HlMgTYRSAAC6SsGzXTDt6+uLN77xjeVjWh+8zUgIpQAAdJVCafoFpsGhMwXRzZs3jzmQJkIpAABd1YF0sLqtNYy22244hFIAALpqd5d0ODUSQikAAF11CqVJ/ThWQikAAF09//zzo6qR6Fm6dGnflcu/Ek9u6KuaBrrrpq/H4sWLqzUAABiZvfbaK3782LPV2kDTp/bE+087ZehQ+tq5u1VLAAAwOmMOpQAAsL3UodTPlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkF3zt+8BACCH5kdCVesAAJBBxP8H5nv8H+xf51UAAAAASUVORK5CYII=" alt="" />
等待输入3个实数
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACyPSURBVHhe7d0JvGZlfR/w584mOwzGYWYgbZMmLpVlWESBgAjIoA6i0YioEbePbZo0FjQYTZPaEjEQN5o0k6SihLjEJDVNXTCyOBhBJyogi7VJbWtbYJhhURGYGWbm9jznfZ875545513vvc+9zPc7+fu+59nfcyfen+9dZmLnzp2ToeJlL3tZ9xkAAMyOP//zP+8+65gKpTGMTkxMhBeccWY49fS1YcWKw8oBAAAwU7Zt/XG4+85bw0evuipMTk5OhdOJXbt2TZ533nlh+fJDwy+/7ZLwWFhWdgAAwGxZddCycNmlvxUefvihMphOfPWrX5284oorwm/82/eFxyae0h0GAACza9WBS8Mlb/9X4dOf/nSYOPfccydPOunUcPI5P9/tBgCAubHp728Ln/jENZ1Q+m8v/d3w6OTSbhcAAMyNZ/7kivCWN76mE0o/8rFPhu/+vy3dLgAAmBvPPOJpZShd1L0OE0oppZRSSs1xJVPvlP79PQ90mwAAYG48/fCfmP7l+3+498FuFwAAzI2fXf3U6aH0f9z3ULcLAODJ4dFHHg1//9//V3j44Ue6LbNv+fIDw9Of8VNh/wP3L6+doXOGNj+z6tDhQun1f/2p7rPh/PQzjgr/5On/LCxaNPXtqwAAc+KWv701rDn6n4YVhz212zL7Nt//YLj9ju+Fk089rrx2hs4Z2uwRSr+36eFuV7OJR+/vPmu2aGIiTCyaCJOTofwno2JFX7ruhvBza18W9t13v/IaAGCu3PClW8K6l/xceOhHj3VbZt+hB+0XPvf5r4Yzzz65vHaGzhna/NOVy2s/fR9DZY86Zs2annXUMceEI486Ohx19NHh6OJ5ai8VAbVpzXlXD9wQ/uO73x++8kBD32xXde/5co6m/rFrS/jK710c/vI7TX1KKaXUzFf5xtkcVtN+8/UM6Ufgd193+5r+lH1xePWxOyf96V7HGvQ1J1PvlP6vzT/sNjU74ekrw4ab7g5/dNPfh0VLdoVFSyfDomU7w+KiLn/FWeHQQ5d3R3acefGnww0fPD/8zvuvDKeufVnYb/8Duj3J5nDTlZeFL93XvSwdH177O78Y/ln3arc7w1/8+rVhxdsvCc9/WreptOcaa17/4fALey4wmC3Xhd/7wG3h6D32mUktr6W6d5iLc7SYOseLwuYPDHbP2z9uTTrzN79wjI9To7a/I1HsuyrcXj5fHc6ujilf7+fDpu7l9L8/PeYl3fnhnHeHf3X6im4jAPPF9X9zczj33NPm/B3Cz372K+GstaeU14Oe4ZYNG8KtX9/YvWp33POeG04+/fTuVbPWM/zw0eIqfjV7dxjsmCz+TISv3RTP8HfdtrjXieHk004Pt9x0U7h14+6zlWd4/vPLr5B3cmXnK+STkzFodi4PPWT/aWdo81MrDh7undJ09FWH7RtWr9yvqH3C6vh8xb7dnnaN68Uq+ta8/spw2eXden0In/j1fx3+Yo930Y4OLziniAh3b6m1F1WEhbXv6M5/x7pw/zVXjP4u34qzw69e/s5w+oqGvoFqS/jKlU3nr1bLa6nuPfY5xqipvXvd80E/bi3V+VvR3DdytZ03fkyuCvef8xvds64KX/rAn4b/VvbdFf7ikxPhgvQ6yr8/qa/XvMran7wtTKwqX02lXSml1HyqGHYWL1o0ZxX3G+UMMZB++pN/0LfiuKb51Wo7Q+f5otpjfFdzcfnOZgykf/npP5qqeP21r3QC6fT2jZ15i9L6ca1i33RdPDadoamSOL4UD9KrHt26vRy3/JCl4X8+tCn8ty3/J3z3ge+H//7g/y7bo5iR0/eSPu2o3f9CVNN6xVmLg3QOO9V25IXhdyrBoDr+sCOPC+GOb4cHp7V31yj+lNdFoDrruHvDHXdvroyZy2p4TQ3V/FrmX/W859W2Hh+3PWuwezRKNZ53y7fDHfedEM4647DO9ZHnhHNWfyvcXQToRUWQffVFZ4fD0tgVx4RjVt8XHtjSb16nHtzwsXDHmjeGs4pQWvwVnGpXSik1f6pUPMZnc1bdfaedoRBP0evPMKrzmv90VM8Qg+JEEVjj+TqP8aydMNn5vLwoHH/S88Irz//nYdeuXWX9+afWh28VATQ+prbYH8eV68UgWobRVJ39yjXjJ/1COkNbJVOhtHPQHtUdt/H7/xB2LH0sLN13R1i6zxNhSVFRfMs3jkkfiJX/+P+Wj1HjemnnYvy09pUxGHwz3BXfdXvgunDlJZeHDfGdz9gePhdujO3T1ij2q87vNk0suj9s+PCvhk9/587w6Ut+Nfz6h68LD5RjutdTdU34Tppb7le5ro29csP93famvuuK6/eGL94bwm1/UrR193tgw+VTY6b2anot1b2nnSPuU9yDDddU9mo7R3fc1Gtt2T9WuUdqj/ep2t7jnIN83Mq2tnuX5k/vb9y/6brX6228r5vCfccdG46cmr8yrFgZwqYt1XuYanO4/97VRX/xvN+84lyf/Pbx4bVnrqz8nUtjq9V8Hzofl92v6zt/VvT/2Z095yillBq+Ov8VHd8wi8/npibjQ3xWPUN8Hj939qiq81/zL/eoqqb51Sr+ozOucoZocdFehsfu4+KiL1YZUovHU884I5xw8knhVRf8Uti5c2dZn/r47089j+2xP44r313trp8CZieMdsJpks7QVsnuUFou1F7Ff5TjpsLoU54oHreHpU/pvINaWbP04TMu7z5rW7s4dKezZ3vnaXy+Kpyx9jnhtjvu6F7vHjt1veW6cN2th4c1R62a6rvt6tvD0R/4/XDF29eGFRN3hD97x38Km178m+GK2BbrjRPhmncU4aC7RrFad7049gth5Tu74z7wm2HN7e8Nf3Z36pu+zkVnrg0XFGNetDqEY99YtMX9ivN84gurw4Vprw+8IRxZrt30Wqp7V58XT8M94Yubju2s8c6XhvCFq8OGLbGvc44Q9yvXf1OYuP2bu+e27r85bLh+Irwutb+xOMvVTfeg/Z4XTypt9fZe9672cem5f/26z+ttOO8Dmzvf/JquyypbinNU24r6zifjx/RF5T3qPa+4fx//bFi5Nv6dqrZXxpbVfh9WnPmucOFx3wzX3bg5TNx9Tbhm00vDr732mJ5z9lxfKaVUvyr+owg+RXha3Ltu3rAhfPiyy/pWHNc0f1oVn+vKfatniJ//yuDXXtGDDz5YVnTxb/7mVEXVvqb59Wo8Q/GY3tUsQ2EaUwxPYfW0M84MzymC5wWv+5Xw8MMPT1W8ju2nnlkE0m6g3L3W7ppqq92Htko6d6DQNKhaSXxndGkKpMu2h2XLtpXtk7t2lY+NGtZLaza3Hx5WxnerDlsbLv7gu8MZh3X7jjo2HHfr7eHuaWPvCdde/ivhkrcXdfm3wpp37R4fHfemFMSKuvv2cNvql4ZfPGvl1PyJo15UBMlvhDvjJ/10N9LY6tpvvzRce28ImzbHENGwTrc607vXh60Mq8I3wp+8/X3hy/Xvc62/lure1eexivvxorVrOs8PWxPWFME3/q+AdI4XHtUdN7EynHHOc7pT49i2/Ytxr1sbJm58X+e1fewb5ZyiY8+9G+95d/1aTX3cet27clzt49L2MYhV/5j0er2xauddsbK4WamvW2WKrLXd/clfCX8y8dZwcfdj2mveAzd+NFy76q3hNd1zNK1XVp/7cOTr3hpWfeHS4v7fG150YTfg9pmjlFJquIq6Dz1945Zbpn3PZFvFcX1196ueIbbFZ70q2rZtW1nRBy+9dKqial/T/Gol085Q6ITG2BYD6OLyumzrfk/pxOJF4atfvrF4nV8LH3r/v5naM1a8ju033/jlYo1ifAylxZxyXgqp5fMYSCt7xrYelaRP+Y2DqpWUYbQMpNvKd0mXLOt8+f6Ou+4Od9x5V1nx20q3Fod//PHHy76m9TpVdk5vu/vacO3ECeGoxh/yWROOOf4bnXeXptoODy9+1x+E938o1m+EM6fNq6/fuZ7eFqsIUzHIln9i3ottxZPDzwuXlOvurreXoaVtne68qedrwmvKeW8JE9f8cvi1iy8LXy7f4ez0TXst1b2rz4uKyrbudWzqXMeOeDG9b3dby/5bvhQ+dPEvh49PvKXzut51Xujk3KKv/LN77+Z73tlj93VR0z5uRX/rvev2p3lT1W2r7z/tujOmHDdV9bb6eYv+TfeHLVP9m8OWTSGsWrn7f1B85xO/HP4k/PPw/td1g39ZbfMmwl233xPCt/64uJ/xnhZzvxXCfZ//9+HXPjH9ne/i//rchzigo7gaeI5SSqkhqviv1fKnXeKTXlX43ve+17dKTfMrNfW0coZYxUXvKmzfvr2syy+7ZI9KfaWm+dOq/L/iaecMSXwHs0iNnUBZVvddzW6o/Nvrbwx/d/Mt0/a76B2/PfU8tsf+r9xwQ/G5uRNoO6G2W+XzzrrJ1H1oqWTgUBo3uPfe74W3/qN14U2rXhYufNovhNceckF49QG/2F1ht873HcRvhu380FPTemXFvvgnXd91dXjHVfeGl1x4TvnDJxNb/iZ88KL3VoLcRDhy7Xkh3Hb77rAwzPpHHReOv+evw8dvqASsu64NXwhFmCrfXS1PGxecGnvDXd1xRd398as778Dt0fft8OW0ZnXP4vxfLsesDGf+2nvCSw6/J9y/udtX1PTXUtm79jxepjllpes9zrE5fPmLnXc9y+u2/TffF+4tgk96p3fLnd8M9zbu3anGex7/pOv6x63XvYtVzL/19m9P9W254SPhC/ecGI4p33mM+98bNnc/5tPO1u/1dmvaeY96SXhJqMwpP97ndd9tLea//1+Gv1n1nvCBX6wG0qJa58V7uT584MO7643Hh7B6XXeN6t/ZPvfh7o//UdhUzHvnuhC+cM3fdM/b594ppZQaqqLFRVhq+gn1akVPPPFE34qa5ler/PJ9oXqGTmBLQbC5oqY96xU1za9WfM3R1L0onsezlQGy6I9tncf4rmb33IsWF4Hz5vDb/+6iqb3e+e4rwnNPPaV8TG2x/+++enP5mjrvjnaDaHevFE7L/apnaKlk6veUbnqk83Zwm3/01P3DIfsXL7DYfOf2J8LiJYuL50uLnp1hcseOsH1H/Mn7EHbs3BF27tpVHiIe7oP/YX144cteHfbf4/eUbgo3XPGe8Pl7upfR4S8Lv37JOWHqtz3e/8Xw/su+GY59978JZx7WbSvnfSSEC2Nb9Xm3e0pn/U3n/GF47dHdptLt4RNv+8Pwre5VCCeGN135pnBkfFrud284Z9r1fylCUcfxb66sNa1v9xqbr//t8Duf/X9Tr2Xzn/6L8NH4bY/RCf8ifLAILrtVzh8qe087Rzzv58LKqXtQe83TznFEeMm5q8Pnb109dR/vaty/c2/SvV99wokhFGP23Dup7jl9bqn+cYta711n/qZVJ4ZvfTP9HrTKx6AwdQ8L084WG/q83o5e96iy1x0fDRdftft3sXUUa6Z73TavJt7jLxbB9h1FyO/MqfydbbkP5cflvnTfuvd0Vffj0zIHgOF94bMbwsvPOz384NHuO4wtbrr+ujJo9XPiz50Snn/WC7tXzQ7Zf1n4q7/eEF58bud3ic6nMzyytQhs03TeQCwiYfnspi99KXz9b7/aaSo899SfCy84++ywodb+vKL9+UV7GSnjxN3ZcsqB+yyZdoY2Kw98yvR/ZvT+H/e+UX/1p38co273ak9Lly4puheHJ7Zvm3p50aqf/KlwzHNODvvuN3P/zOjm6y4N77vv3PCh11cD3gwowsDvvvfe8KL/0Bw+ZsPUa1m7aWb2LoLWRdeuDu96Zy0kjmnW7vm4Wl7vvD0vAHPq8//1y+EVLz8j/PCxzjuMc+Hg/ZaG//xXN4aXvPQF5fV8OsOPHq+eIea6amrrmCgDarU95b+irZzSHRHf6ZzsjJwaEbNi99eDHrTv9DO0OeyAZcP98vxzL3hjWPvzr2mtM859VXjBuleEs2vta048Jeyz776Na45ah5390nDCN28NdzX0jVNb7vxGuPfw1Z0vQc9Rpddyw0h73x9uuPyjlfvw7fCJj2wMq48/dsZfw2zd8+Fq8Nc7P86rlFJqXlT8UvLiuav0gz7z8Qyd5/ExVjX/xTmdL73HhNkZ22nrjOuOjX+6DcV/dh6716mt/LJ+fN50hoZKpt4p3fJY/e3cvcgdHwlv++P4T2c9N7zl998Sjuq0zo1x977/2nDFpZ8J6avph593abjkhSu7V09Ce9vrBWAsN153SzjhuGeGVatm8uuHvd133+bwzVu/G8544cnltTN0ztDmafstmf7l+wce29ntAgB4cvjxI4+Fr3/ttvD441u7LbNv3333Cc876dhwwIGdb110ht7fwvkT+y2eHkoffLzH7xkFAIBZ8NR9F03/ntLymwCUUkoppZSay+qaeqf0oa17/vQVAADMpkP3meh8+X7dunWTV139qdZQuvH6z3SfAQDA8C688MLw3Xse6V5NF0Ppm99wwWChdOPG+NPhAAAwnHe/+93hiCOOmLlQun79+m4LAAB7g61bt4YtW7aEJUuWhGXLlpX/fGhV/D2jk5OT037faJR+B2mcv23btoFC6fSVAQAgA6EUAIDshFIAALKb0VC6YcOGabVQLfTzj2I+fNyqZ+h1jqb+QeblNN/PBwC5zWgoPf3008tidLlCy3z4uI3z92e+/73z/xcA0Jsv3zcYJxyNw7tog8n18QEAplu8eHH5U/nxcVwD/0qo888/v7yOYaAanprCQeqv99VD11z399Nrfr0vauqPbdWxaUy1P2q7rqvu0U99jWHmRk1nmMv9k/q9SfqtX5/Xdp0Me76Znh8Ns8a4+wPAsHr9SqgYRGM973nPC1//+tfDrl27ws6dO8u+Wf2VUNVP7PF59XoQaVyvuamvqb/f/EHW76c6t03b+tW2tjG9pPFRml9tG0R93rCvPxlljTRuJvZvU127n+p5opk4X5o76vxklDVm4vwAMFNSIH3Ws54V9tlnn/DWt761DKzjvGM651++j59I2z6Zpr6m/von4uon56q2+XuD9Nrnw+tv+/jMhfT6Z/rvR5o76vyZlPP+ArB3S4H0yCOPDM9+9rPDWWedFY499thw5ZVXjhVM5zyUpk+m9U+q6RN9vb0q9fUKBmlMqr3FIPdvb5Fef9PfkXR/hr1P7i8AdMTQ+YY3vCG86lWvCq985SvDc57znDKcnnTSSeGmm27a4199GtSch9KkV7BsUh2fQkGv+cOuP9/M1vnTuqOuPej8cfaYCf3+jszW+dK6o6496Pxx9gCAccTvG7366qvDb/3Wb4VXv/rVYe3ateG0004LJ554Ynj+859ffm/pKIb6t++bPglW3zVq+yTZFhDq7zhV+2Nfuh5lflTv76c+P+l1luoeTfPb+pvWjOpjhjHO+tWxvc4waF9U7++nPj9J6/TqbzpXamubP875qntW12k6R1Qd2zYmGrQvqvcDwEyby3/7fqRQ6pNhs/l+f8Y9n49/b+4vAE82cxlKB/7yffqEGVWf07EQ7k8MO+MEnnHnP9m5vwAwuoFDafqE6RNnM/cHAGB02X7QCQAAEqEUAIDshvpBJwAA9h7xB5XuvPPO8P3vfz88+OCD3dbd2n7Q6ZBDDgk/8zM/U/6A06z89D0AAHuPGEo/97nPlf++/aGHHtptDWUQjWJ//LWkk5O7yrb4O0y3b98efvCDH4bvfe8fwqmnnjq7oTT+dPkoP8xT/6n0+hr9+vsZZ37bT8y3rZHGD7rHsOsDAOQWQ+fHPvaxcOGFF5bXneC5K+yKIXTXZPjxjx8tg+jOIpnu3LEzPL718fCjHz0SDjn4oPCVv90QfuGVvzDzvxIqaQtX/VRDXApi1bX69fcz7vwkza+uUzfKuskg6wMAzCcxjMaK/1pTWUUw7bwr+kQROreXwTPW449vneob1lC/p3ScMNbPQglps3kPAADmq04o3R1M4zumO3buCDt27AhPFOE0BtT47mkKsMMa+veUjmq2Q+dsrx+lQDrb+wAA7G2y/EqoXuGu+o7sqOFvnPlp/7RGMu6Zkrb1AQD2ZnMeSvuFu9ie+kYJbv3Wb5P27bd/bKu2D3rGQdcHANgbzWkoTSEshbKZNpvrVwNldf3Z2AsAYG8z46E0BsNUVfXAWB/TNKdJGlcfm67b1k9Se72vbfywZnt9AIBcFi9eHJYtWxae8pRlYZ99nhIOOvDAcPDBB4Xlyw8Jhx66PBxwwP7dkcMbOJTWQ9WoIattXlOYHOVdyLb1+xlm/+r6g+41U68PACCXRYsWhbVnvzD867e9LbzvsveGKz/8wfD7v3dl+KvP/GX49u3fKoLqPt2Rw1tQ/6LTfA9zwiYA8GSSfnn+61//+vLXPC1atLgIpL8aTjnllHDI8uXdUSEccMAB4cADDwzLl/9EuOeee8PBBx8YbvnaV2f3l+fnFMPefA588/18AADjiL+f9IMf+nD4+Ve8osg8Lwgnnvi8cPzxzwk/+7PPCE972soyxI5qQYVSAADymc0v348VSgf9fsp+ZmodAABm17Of/exw2mmnhZNOPnmqjjzqqLD68MO7I0YzcihNQXLYQCmAAgAsTPPmy/cxUKaKRvkeyjheMAUAWHjmzZfvUwhtC6LV0JoKAIAnj7Vr14Zzzz03nF08pjrxuc8NP/XTP90dMZoZ/0GnfsE16tU3m8YJzPW51RqkHwBgoYtfvr/47e8IZ551Vjj++BPCs5717PD0pz8zHH74T4aDDlo+N1++bwpa9et+quOr1dY3k9J61cA8yh5pfluw7tcPALBQ7dy5M2zfvj1s27a9CKDbwo8eeST88Ic/Cg8//IPw0EMPhx//+NHuyOENHEqrYSsFrvp1P9Xx1Xlt7QAA7B1G+vL9TL+LOZdGPXu/sCxMAwCMbqzvKZ3JcDrbQbcaGNNe44TIfmvMxB4AAHuLoUNpDFspaMXHccLkKGvFMaPsmeZUQ+Io60RNa1X16wcAYLqx3ildqMYJiwIpAMDMGyqUxsBVD1ujhq9R14pjRt1zEPFcqQAA6JicnCwr/lqoWJOTxePOzvNO7Qy7YltRoxg4lDaFyCaDhLpB12rSb+02ab/q/NkMtwAATxYxjO4sAuiOHTvKXwsVn3eun+jUzh1TfXHsKAYOpYMGuDguVZNxAum4qmdrO8Og/W369QMALCTLly8PP/jBD8LERBEcFy0KixcvCkuWLA5Lly4J++23b9h///3DQQcdWIw7OPzEUw8Nh614Wvm7TA85+JDuCoOZWLdu3eRVV38qPLS1OdVuvP4zYePGjWH9+vXdlo5RwmW/Oak/Z3AFAKAj/gtNt912W/j+978fHnzowW5rfzGQrlixIhxzzDFh27Zt4YgjjgjfveeRbu90h+4zEd78hgvmLpQOOl4gBQCYH2Io3bJlS1iyZElYtmxZ+U5p1cTERPnl+vhYFa9jxfmDhtKRf/p+2OBYHR+DZ5NhAmnTGm3r9jPqPAAAZsbQP30/bM038/FMAAB7u5G/fF8Vg94w75w2jR9ljUE0rVnfa9i9AQD2Bgviy/ezIYbDejWJ7TFE1itqagMAYH4bKZS2hcWkX39dr5A5G2Zz7V7i66zWsPrN79cPADBfzchP31efR/XrqFdIaguJvdap7t1mmDM0aTvXKNrOPege/eaPuz4AQN2C/vJ9DENNQSi2pWq6TiFqFNW1qmvWtY1rawcAYG6MHErbgtuogS7O6xdM2wJvbK/XfBPPPeq9GcRsrw8AMJsGDqVNwS/VIP3jiuu0ha4UyKo1rJk65yDSXsOcM40d5J6Osj4AQE4Dh9IU9ppqkP5BpLFNoavXOimoVWsQcVxaNz4OMm+Y9ZukucPclyTOqc5rWmOc9QEAcpnx7ykdVwxVwwaqFNaqNR/NdmAUSAGAhSpbKI0BKoWoZJRAGqW1qtVPHFPfa5C945hRzxiluW3nTO1NfVFqr5+h3t5rDQCA+WbOQmkKSbFSsKsHqHrQGlR1vVS9jLNXOuuoxpk/yLxxzwcAkMOchdIUApvC4CBBcqbEwDZXe1Wl11ivupnoqxYAwEIwp1++HyQkpXf5+oXH6juC6Xm1qu1JfN5vzfTYNi62D/I6AAAY3Lz7QacY+PqFxyiFw0EqGnTNQcYBADCzZiSUjhPi0ruTVYOEx6hpbptea1bXEUgBAObeUKE0hrdhq58YAgcZV5fmDDt3lL0AAJhdQ4XSGCCbql/fTImBMlU0yh5xvGAKADC/TKxbt27yqqs/FR7aOtltmm7j9Z8JGzduDOvXr++27CmGvH7hcJwg2LR2055Newwyd5DzAwDsbbZu3Rq2bNkSlixZEpYtWxYWLZr+fubExESYnJwsH6vidaw4f9u2beGII44I373nkW7vdIfuMxHe/IYLRgul/ULdoCFvnDDYNDfHOYYR96lqOn/VsGcaZH51zFy8ZgBg4ZrLUDrSDzrFMFMPQLMt7letetsgquOr1dY3k9J68d6lMFjdo19/P4PMbxoDADAfjBRKe4nBZzYCTwpS1UBVv+6nOr46r619Js3WuoOqBlIAgPlm5FDaFm6GDT0xLDVVL/36F6LcoRUAIKeBQ2k9NFZrkP42KYxVa1D91h7GTK7VS/WetL3Wfv1N0tjq+k1Sf68xAABzbeBQmgJjUw3SP1NimEprxsdxwtUoa8Ux4+wZ90l7Nq2T2tKYYVTXjprWqI4Z53UAAMykGf+eUkY3TiAFAFjIsoXSGMCGDV9Nc0YNcKOuFceMsmfcL4XOJqkvrd02PrU39UWpfZQzAgDksmDeKY1ha5Cg1S+0RYOu1aTf2m2awmbTGUZdP+o1b9D9AQBymLN/0amq3/hB1msaU28bZEybtnGxPRpkDQCAhWze//L8cfQLe4OGxib1efXrfmsPcobY3msNAACGN6ehtF/YGyeQ9jPI2rN9BgAAms1IKB00xDWNiyEwGSYMpgA5qHHO2MswZ2gzE2sAACxkQ31P6SjhaZCQF9cdJwwOOnc+nL9p7CivHwBgts3l95Rm+UGnukHnx3FVs7HnKK9l2Dn18aPsCQAw256UoTSOGVXT2k17Nu3Rdq62M/dqH1XTOattbXsCAOQ070Npv1A1aMgaJ4w1zR3mHG19w5xpmLG9zNQ6vcQ9mgzzWtu03cdotl8XADB75jKUjvSDTjFo9AopsyHuV61620JQPW+12vpmQ/zYVWtYg8ydrbMDAE9eI4XSXmIgGSXs9FMNQ2n9+vV8Vz1v9dxt7QuRQAoAjGLkUNoWnIYNVOldwXr10q+/SdP69ba29l7qY1M92QwSltPrXsihGgDIY+DvKT3//PO7LcNrCykxxDT1tbUn1dBXHVef12udUfeumsk16nOGWWMQcb26cdZP66U1+l0DAAvPvPye0hgu2mqQ/plSDWvxsSlsLRSjvJY4ZpTXHNevVjTqvUvz0jpV9fONugcAsHeZ8e8p5cmtLZBWA2+1rz4OAKBJtlAaw82wgaVpTq7QM8r5q0Z9LXHMKPvG/WL1k8YNMhYAYKYsmHdKY0gaJIwNEqoGXWu2jLN/v9fWJu1XnT9b96B6vlHOCgDsfbKE0hhUhg1Eg46P41LNllHOn4wzd1zVe9N2hkH7e6mu0W8sAEA056G0LZSld9TGCW31eW37jBOUxjl/v70HWSO291oDAGAhmtNQ2i9s9Qtt4xp3/XHOP8je/dYAAHiympFQmkJUDFS9DDpuXG3rt4W96vhegTD29Tp7r9dXXXfc199r/rhrAwDkMFQone3A0y/09RPnpvlt66Qx1erVPtvmah8AgPls4H/Raf369eV1DFG93hGsq75DmFTXqOvVV5XG1c8wyNyobZ9++1f3q+7fdJaovlZ9/X7XdU39TfsmvdYCAOhlXv6LTk1i4KlWW1svMVBVq62tKrY17TeMOL6+dnXdXqr7Vce3tffT9BqjtvYk9ad9q3tXrwEA5ruh3ymt6xWcqqGoaVzsj+29wlNTf9ucXms17T+otGavfXtpmp+e93usqrcNMgYAYFRz+U7p2KG0atBAlMb1C1lN68W2qGmfpvEzKe2dxL3azljva5ob1ec3rRfV50dpj36a1gMA6GdehtLzzz+/2zI9UA2iHop6Ba9+ASrtOer8aJBzt525vkf1umndpvP0m1PVb34/w4wFAKia1++UzkTISUEsrtMvlEVpv7T3IHOq6uft9xp69Vf7queojh90ftTvuq6tv9qenvdbCwCglwUVSuN1m7bwFNX7mtZtu673JW3tdXFcP/V1mubUz9NrTNR0vmpbdX59XNQ0vyr19xsHADCIuQyl01ceUQxA9aqLQWmcsDTqvDbVs9arSbUvPY+vp6ppTJLGpvtQnxuvq3Ob+tNjtVJbVN0PAGAhmZFQWg9KKSRV1UNaVRw/14Gqft5qjaI+v36dXl+6D9XXG8fUX3+8TnOj1J/mpkpt1bEAAAvNjHz5vnqdtLVHTX0pVKWA1TY3GmXPNsPOqY9vmj/MmoOs10sc3099/WSYfZLc8wGAubMgvnxfDRfxeb2GFQNKrDh3tsJKOlf1fGnPJr1eR6++fuLcmZgfK923VFH1MT0HAJjPRgqlKQwlKfxUaxRp3fiYU9q/7SzVczaNaXr9cUyq2N80ppem+fU1Ul8UH+N1XdvcQeWeDwA8OY0USnsFiqYglPTrS+vGx15jkzimWm1tUXzedu5hA1I6X/28bZXGVB+r6mOr16mt1/wojqv3xes0HwBgPhv7X3RqCkNNbUm9L4WmpvFt6/Raf1Bp3zbjrj9Xet2/aCbuFQCwd5rL7ykdO5QCAPDktCB+0AkAAGaKUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCAJCdUAoAQHZCKQAA2QmlAABkJ5QCADCwxYsXh2XLlpW1dOnSqcdUsX8UQikAAAOLofOUU04Ja9asKev4448Pa9euDRdddFFYv359WLRotHgplAIAMLCdO3eGm2++uQykJ598cnj5y18efumXfilccMEF5eOuXbu6I4cjlAIAMLAYSmNdffXVYcWKFWU4fcYznhFOPPHEMpDGvlEIpQAA9DQxMTGtYviM9Z73vKf8cv6znvWssQJpJJQCANBTDJ5NwXRycjK8+MUvLh/jdX3MMIRSAAB6iqE0/gBTPXTGILpjx46xA2kklAIA0FMKpHWprRpGm8YNQigFAKCnpndJB6lhCKUAAPTUFkqj9DguoRQAgJ4ee+yxkWoYE+vWrZu86upPhYe2Tnabptt4/WfCmWee2b0CAIDhHHHEEeG79zzSvZru0H0mwpvfcEH/UPrMww/sPgMAgNGMHUoBAGC2pFDqe0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhu6qfvAQAgh6lfCdW9BgCADEL4/+UQNHHOEwD0AAAAAElFTkSuQmCC" alt="" />
基于visual Studio2013解决C语言竞赛题之0204实数求值的更多相关文章
- 基于visual Studio2013解决C语言竞赛题之0307函数求值
题目 解决代码及点评 这又是个条件函数,但是这个函数无法用switch来解决,因为switch只能用于和某条件相等情况下,而这个函数的范围是无穷的 遇到这种问题,我们还是需要用复合的if语 ...
- 基于visual Studio2013解决C语言竞赛题之0301函数求值
题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> #include <math.h> void main() ...
- 基于visual Studio2013解决C语言竞赛题之1036递归求值
题目 解决代码及点评 /* 36.已知有如下递推公式 求该数列的前n项.不允许使用数组. */ float fp50036(int n,float x,float ...
- 基于visual Studio2013解决C语言竞赛题之1037数组求列和
题目 解决代码及点评 /* 功能:已知有三个数组A,B,C,A为5行5列的二维数组,B.C为只有5个元素的一维数组,键盘输入数据的顺序如下: 23,45,6,1,- ...
- 基于visual Studio2013解决C语言竞赛题之0422牛顿迭代法
题目
- 基于visual Studio2013解决C语言竞赛题之1035最大数
题目 解决代码及点评 /* 35. 用随机函数求出10组三位正整数,每组十个数, 调用一函数打印出每组数,并编一函数求出每组中的最大数. */ #include & ...
- 基于visual Studio2013解决C语言竞赛题之1059最大平台
题目 解决代码及点评 /* 功能:编写求最大平台问题的程序. 有n个整数a1,a2, ... an, 若满足a1≤a2≤ ... ≤ an , 则认为在这n个数中有最大平台.在这种情 ...
- 基于visual Studio2013解决C语言竞赛题之1056素数序列
题目 解决代码及点评 /* 56. 编程序求3至39之间满足下列条件的各组素数:每组有3个素数,第2个比第一个大2,第3个比第2个大4.例如 5,7,11就是满足条件的一组. 要求: ...
- 基于visual Studio2013解决C语言竞赛题之1086任务分配
题目 解决代码及点评 /************************************************************************/ /* ...
随机推荐
- BAE初试
BAE是百度的应用开发托管平台. 支持python nodejs java php 这几个环境~ 我在BAE上面搭建了1个wordpress. 记录下开启一个app的过程. 下面是所需工具 ---版 ...
- Jquery $.extend的重载方法详述
1 $.extend(result,item1,item2,item3,........) -这个重载方法主要是用来合并,将所有的参数都合并到result中,并返回result,但是这样会破坏res ...
- hdu acm 2154(多解取一解)
//题目中结果有一条限制就是最后必须跳回A,如果我们的思想框在这个条件上就很容易卡住,因为这样的条件下的路径很难有规律的罗列,然而我们说这个图形中有三个区域,我们算出每个区域的第n-1次的种类数,然后 ...
- mac的svn之cornerstone简易教程
链接地址:http://jingyan.baidu.com/article/9989c74612a55af648ecfef2.html 背景: 关于cornerstone的介绍很少: 这里介绍mac的 ...
- UVA 10325 lottery 容斥原理
题目链接 给出m个数, 求1-n的范围内, 无法整除这m个数之中任何一个数的数的个数. 设m个数为a[i], 对任意的i, n/a[i]是n中可以整除a[i]的数的个数, 但是这样对于有些数重复计算了 ...
- IM与工作信息流整合
IM与工作信息流整合,希望减轻用户“信息”负担 从36氪此前的<“明道”现在推出个人免费版本,是怎样的逻辑?>一 文中,我们可以了解到,国内现在的协作产品设计思路主要有两种:一种是像t ...
- 关于js的一些关键知识点(call,apply,callee, caller,clourse,prototypeChain)
可能不少学习javascript在使用call,apply,callee时会感到困惑,以下希望对于你有所帮助: 1.~~~call ,apply是函数(函数对象)的方法:callee是函数argume ...
- Noip2009提高组总结
Noip2009的题目还是有一定难度的,主要是搜索和最短路都是我的弱项,不检查第一遍下来只做了150分,还是这句话,素质和读题的仔细程度决定了分数.仔细想想,我们化学老师说的话没错,或许题目你都会做, ...
- Symfony Composer icu requires lib-icu
运行php compser.phar 的时候出现此问题的时候解决办法 问题描述Problem 1 -Installation request for symfony/icu v1.2.1 -> ...
- 第三章 线性表(C#实现)
1.线性表 概念::零个或多个数据元素的有序序列. 描述: 2.线性表的抽象数据类型: ADT线性表 Data:线性表的数据对象集合为{a1,a2,...,an},每个元素的类型均为DataType. ...