Description

FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中。 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为: |A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N| 请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出不会超过2^31-1。

Input

* 第1行: 输入1个整数:N * 第2..N+1行: 第i+1行为1个整数:A_i

Output

* 第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费

Sample Input

7
1
3
2
4
5
3
9

Sample Output

3

HINT

FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列 1,2,2,4,5,5,9。

额……考场上想了好久想到一个貌似不是很严密的结论(后来证明是正确的):把高度进行修改时,一定是把它修改成原数组中的数字是最优的。因为无论是将数字加减多少,总是当它和旁边的数字一样大是最优的。因为这样能刚好满足单调性(两数相等)并且改变的数值最小。有可能前面修改的数字在后面出现要变动的情况,所以它有可能取到原数组中的任何一个数字。然后预处理排序一下得到有序的数组b[]。于是可以写出dp方程:f[i][j]表示前i个数、末尾的数改成了第j大的数的最小代价,则f[i][j]=min(f[i-1][k])+abs(a[i]-b[j]),1<=k<=j。但是这样是n^3的,所以还要加上一个优化:我们计算min(f[i-1][k])是O(n)的,但是这个是上一步的状态,所以可以在上一步直接保存min(f[i-1][k]),用类似前缀和的方法。最后不能忘了把b[]颠倒一下求下降的

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define mod 1000007
#define inf 0x7fffffff
using namespace std;
inline int read()
{
int x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
}
int a[5001],s[5001];
int f[2001][2001];
int sav[2001][2001];
int from[2001];
int head[mod];
struct node{
int v,next;
}hashing[100000];
int cnt,len,ans=2147483647;
inline void ins(int u,int w)
{
hashing[++cnt].v=w;
hashing[cnt].next=head[u];
head[u]=cnt;
}
int main()
{
int n=read();
for(int i=1;i<=n;i++)
{
a[i]=read();
int now=a[i]%mod;bool mark=0;
for (int j=head[now];j;j=hashing[j].next)
{
if(hashing[j].v==now) {mark=1;break;}
}
if(mark) continue;
ins(now,a[i]);
s[++len]=a[i];
}
sort(s+1,s+len+1);
for(int i=1;i<=n;i++)
{
sav[i][0]=2147483647;
for (int j=1;j<=len;j++)
{
f[i][j]=2147483647;
int add=abs(a[i]-s[j]);
f[i][j]=sav[i-1][j]+add;
sav[i][j]=min(sav[i][j-1],f[i][j]);
}
}
for (int i=1;i<=len;i++)
ans=min(f[n][i],ans); int rev[len+1];
for (int i=1;i<=len;i++)rev[i]=s[len-i+1];
for (int i=1;i<=len;i++)s[i]=rev[i];
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
{
sav[i][0]=2147483647;
for (int j=1;j<=len;j++)
{
f[i][j]=2147483647;
int add=abs(a[i]-s[j]);
f[i][j]=sav[i-1][j]+add;
sav[i][j]=min(sav[i][j-1],f[i][j]);
}
}
for (int i=1;i<=len;i++)
ans=min(f[n][i],ans); printf("%d",ans);
}

2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整的更多相关文章

  1. 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整

    贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...

  2. [BZOJ1592] [Usaco2008 Feb]Making the Grade 路面修整(DP)

    传送门 有个结论,每一个位置修改高度后的数,一定是原来在这个数列中出现过的数 因为最终结果要么不递增要么不递减, 不递增的话, 如果x1 >= x2那么不用动,如果x1 < x2,把x1变 ...

  3. BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整

    n<=2000个数,把它修改成不上升或不下降序列所要改变的数值总共最小是多少yy一下可得最后改成的数值肯定是原数组数值中的某一个感觉一下,相邻两个数如果有冲突要改,那肯定把他们改成两者之一的数才 ...

  4. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )

    最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...

  5. 1592: [Usaco2008 Feb]Making the Grade 路面修整

    1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 428  Solv ...

  6. BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...

  7. 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整

    FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...

  8. BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整

    Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...

  9. 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态

    我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...

随机推荐

  1. CSS常用操作-分类

  2. s16_day01

    一.基础 1.编码 ascii-->GB2312-->GB18030-->GBK-->unicode-->UTF8可变长 2.数据类型 int,long,float,co ...

  3. 关于在centos7上安装vmtools的各种报错的问题处理

    基本上如果安装vmtools时报错的错,首先记录一下报错信息 例如,本次遇见的就是 /tmp/modconfig-8mD7iy/vmhgfs-only/page.c:1625:23: 错误:提供给函数 ...

  4. iOS面试题大全-点亮你iOS技能树

    所有的内容大部分来自于网络的搜集,所以我不是一个创造者,而是一个搬运工.我尽量把题目,尤其是参考答案的出处列明.若有任何疑问,建议,意见,请联系我. 第一部分面试题来源于iOS-Developer-I ...

  5. 浅析NSTimer & CADisplayLink内存泄露

    偶得前言 NSRunLoop与定时器 - invalidate的作用 我们如何解决? 偶得前言 本篇文章中我们主要谈谈NSTimer\CADisplayLink在使用过程中牵扯到内存泄露的相关问题及解 ...

  6. Java学习之List接口

    List接口 List接口的定义如下: public interface List<E>extends Collection<E> 可以发现List接口时Collection接 ...

  7. auto and static key words

    ---恢复内容开始--- 对堆栈怎样实现函数调用的描述也同时解释了为什么不能从函数中返回一个指向该函数局部自动变量的指针,例如: 当进入该函数时,自动变量deciduous在堆栈中分配.但函数结束后, ...

  8. Java基础知识强化48:Java中哈希码

    1.概念:      哈希其实只是一个概念,没有什么真实的指向.它的目的是保证数据均匀的分布到一定的范围内.所以不同数据产生相同的哈希码是完全可以的.      现在是站在JAVA虚拟机的角度来看内存 ...

  9. XtraBackup做mysql主从同步

    一.背景: 线上一个主库压力比较大,所以增加一个从库,但是不能重启或者停止主库的正常运行,不能锁库锁表影响业务的正常运行.所以这里想到了XtraBackup 二.XtraBackup介绍: Xtrab ...

  10. django: form fileupload - 2

    继续介绍文件上传的第二种形式和第三种形式. ------------------------------------------------------------- 第二种形式较简单,直接用 DB ...