POJ 2142:The Balance_扩展欧几里得(多组解)
先做出两个函数的图像,然后求|x|+|y|的最小值。|x|+|y|=|x0+b/d *t |+|y0-a/d *t| 这个关于t的函数的最小值应该在t零点附近(在斜率大的那条折线的零点附近,可以观察出来)。以下三种情况中,函数最小值都应该出现在B点附近。
/*
对于不定整数方程xa+yb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解。
上面已经列出找一个整数解的方法,在找到x * a+y * b = Gcd(a, b)的一组解x0,y0后
,/*x * a+y * b = Gcd(a, b)的其他整数解满足:
x = x0 + b/Gcd(a, b) * t
y = y0 - a/Gcd(a, b) * t(其中t为任意整数)
至于xa+yb=c的整数解,只需将x * a+y * b = Gcd(a, b)的每个解乘上 c/Gcd(a, b) 即可
在找到x * a+y * b = Gcd(a, b)的一组解x0,y0后,应该是
得到x * a+y * b = c的一组解x1 = x0*(c/Gcd(a,b)),y1 = y0*(c/Gcd(a,b)),x * a+y * b = c的其他整数解满足:
x = x1 + b/Gcd(a, b) * t
y = y1 - a/Gcd(a, b) * t(其中t为任意整数)
x 、y就是x * a+y * b = c的所有整数解。 */
#include<stdio.h>
#include<math.h>
#include<limits.h>
int ext_gcd(int a,int b,int &x,int &y)
{
if(b==)
{
x=;y=;
return a;
}
int temp=ext_gcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return temp;
}
int main(void)
{
int a,b,x,y,i,j,n,k;
while(scanf("%d%d%d",&a,&b,&k)!=EOF&&(a|b|k))
{
int flag=;
if(a<b){
int temp=a;a=b;b=temp;flag=;
}
int gcd=ext_gcd(a,b,x,y);
int x0=x*(k/gcd);
int y0=y*(k/gcd);
int h=y0/(a/gcd);//|y0 - a/gcd * i|=0-->y0/(a/gcd)=i
int min=INT_MAX,minx,miny;
for(i=h-;i<h+;i++)
{
x = x0 + b/gcd * i;
y = y0 - a/gcd * i;
if(abs(x)+abs(y)<min){
min=abs(x)+abs(y);minx=x;miny=y;
} }
if(!flag) printf("%d %d\n",abs(minx),abs(miny));
else printf("%d %d\n",abs(miny),abs(minx));
}
return ;
}
POJ 2142:The Balance_扩展欧几里得(多组解)的更多相关文章
- POJ 2142 - The Balance [ 扩展欧几里得 ]
题意: 给定 a b n找到满足ax+by=n 的x,y 令|x|+|y|最小(等时令a|x|+b|y|最小) 分析: 算法一定是扩展欧几里得. 最小的时候一定是 x 是最小正值 或者 y 是最小正值 ...
- POJ.2142 The Balance (拓展欧几里得)
POJ.2142 The Balance (拓展欧几里得) 题意分析 现有2种质量为a克与b克的砝码,求最少 分别用多少个(同时总质量也最小)砝码,使得能称出c克的物品. 设两种砝码分别有x个与y个, ...
- POJ 2115 C Looooops(扩展欧几里得)
辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...
- POJ 2115 C Looooops(扩展欧几里得应用)
题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...
- POJ 2115 C Looooops扩展欧几里得
题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...
- 【扩展欧几里得】poj2115 C Looooops
题意大概是让你求(A+Cx) mod 2^k = B的最小非负整数解. 若(B-A) mod gcd(C,2^k) = 0,就有解,否则无解. 式子可以化成Cx + 2^k*y = B - A,可以用 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- 扩展欧几里得(E - The Balance POJ - 2142 )
题目链接:https://cn.vjudge.net/contest/276376#problem/E 题目大意:给你n,m,k,n,m代表当前由于无限个质量为n,m的砝码.然后当前有一个秤,你可以通 ...
- POJ - 2142 The Balance(扩展欧几里得求解不定方程)
d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...
随机推荐
- Robot Framework中DatabaseLibrary应用
DatabaseLibrary: 在RF的官网上,有DatabaseLibrary的下载链接,DatabaseLibrary有2个版本,Python和Java版.本人使用的是Python版本. 1.下 ...
- Eclipse下如何打开ftl文件
ftl文件是freemarker模板文件,用freemarker时,常用该文件模板:但是该文件在eclipse编辑时,黑白底的,没有任何提示,下面介绍如何用JSP编辑器打开该文件. 工具/原料 e ...
- linux修改文本模式下的分辨率(CentOS6.4)
root登录 vi /boot/grub/menu.lst 看到如下界面: 红框全出位置为分辨率设置,设置参数如下: 保存 shutdown -r now
- ubuntu下使用命令行创建一个android项目
在ubuntu中配置好jdk和android_sdk环境后,可以通过命令行方式创建一个android工程. 具体命令如下: android create project --target <ta ...
- (14)[Xamarin.Android] 异步的网络图片下载
原文 [Xamarin.Android] 异步的网络图片下载 在设计要从网络上接大量数据并且显示在Android Listview中,而这些资料是利用Json格式传送并且数据中包含这图片档案. 那在X ...
- Python-第一天
1. 基础知识 1.1 编码 python默认是ascii编码,不支持中文 在脚本顶部添加 #coding=utf-8,使python支持中文 #!/usr/bin/env python --- ...
- lucene3.6笔记添加搜索功能
lucene为程序添加搜索功能,此功能基于已创建好的文档的索引之上.这里我已经为一些文档建立了索引,并保存到硬盘上.下面开始针对这些索引,添加搜索功能. 1.简单的TermQuery搜索 Java代码 ...
- SQL学习之去重复查询
下面是一张表的数据
- <原>ASP.NET 学习笔记之应养成的良好习惯
写ASP.NET时应有的良好习惯(不定时增加): 1.view的名称一定要与对应的actionMethod的名称相同:从原理上看,客户端通过url(一般形式为http://xxx/controller ...
- 错误提示:在此上下文中不允许使用名称 "***"。有效表达式包括常量、 常量表达式和变量(在某些上下文中),不允许使用列名。
出现这种情况的原因,是因为在SQL语句的编写格式不正确. 事例展示: 错误: string sql = "insert into person ([name], sex, salary) v ...