F. A Heap of Heaps
time limit per test

3 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Andrew skipped lessons on the subject 'Algorithms and Data Structures' for the entire term. When he came to the final test, the teacher decided to give him a difficult task as a punishment.

The teacher gave Andrew an array of n numbers a1, ..., an. After that he asked Andrew for each k from 1 to n - 1 to build a k-ary heap on the array and count the number of elements for which the property of the minimum-rooted heap is violated, i.e. the value of an element is less than the value of its parent.

Andrew looked up on the Wikipedia that a k-ary heap is a rooted tree with vertices in elements of the array. If the elements of the array are indexed from 1 to n, then the children of element v are elements with indices k(v - 1) + 2, ..., kv + 1 (if some of these elements lie outside the borders of the array, the corresponding children are absent). In any k-ary heap every element except for the first one has exactly one parent; for the element 1 the parent is absent (this element is the root of the heap). Denote p(v) as the number of the parent of the element with the number v. Let's say that for a non-root element v the property of the heap is violated if av < ap(v).

Help Andrew cope with the task!

Input

The first line contains a single integer n (2 ≤ n ≤ 2·105).

The second line contains n space-separated integers a1, ..., an ( - 109 ≤ ai ≤ 109).

Output

in a single line print n - 1 integers, separate the consecutive numbers with a single space — the number of elements for which the property of the k-ary heap is violated, for k = 1, 2, ..., n - 1.

Sample test(s)
input
5
1 5 4 3 2
output
3 2 1 0
input
6
2 2 2 2 2 2
output
0 0 0 0 0

题意:给定一个序列,一次建立k叉堆(1 <= k <= n-1), 求n-1个堆中 不合法的点的个数。
按照题解:两种做法,,感觉还是第一种比较好,。 大致做法: 我们先把所有数字按照大小排序(记录他们在原始序列的位置), 然后对于 第i个数字, 假设它在原始数组中的位置为pos, 那么他的孩子的index是 k*(pos-1)+2 ~ k*pos+1, 我们按照从小到大加入到树状数组中, 那么对于这个数字 他的孩子中不合法的个数就是 query (min(k*pos+1, n)) - query(k*(pos-1)+2)。 然后做n次这样的操作就OK了。。
 #include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5+;
int arr[MAXN];
int lowbit (int x)
{
return x & -x;
}
void modify(int x, int d)
{
while (x < MAXN)
{
arr[x] += d;
x += lowbit(x);
}
}
int query (int x)
{
int ans = ;
while (x)
{
ans += arr[x];
x -= lowbit(x);
}
return ans;
}
typedef pair <int, int>pii;
pii a[MAXN];
int n, ans[MAXN];
void solve ()
{
memset(arr, , sizeof (arr));
memset(ans, , sizeof (ans));
for (int i = ; i <= n; )
{
int tmp = i;
while (tmp <= n && a[tmp].first == a[i].first)
tmp++;
for (int j = i; j < tmp; j++)
{
for (int k = ; k <= n- && k*(a[j].second-)+ <= n; k++)
{
ans[k] += query(min(n, k*a[j].second+)) - query(k*(a[j].second-)+);
}
}
for (int j = i; j < tmp; j++)
modify(a[j].second, );
i = tmp;
}
for (int i = ; i <= n-; i++)
{
printf("%d%c", ans[i], " \n"[i==n-]);
}
}
int main(void)
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
#endif // ONLINE_JUDGE
while (~scanf ("%d", &n))
{
for (int i = ; i < n; i++)
{
scanf ("%d", &a[i+].first);
a[i+].second = i+;
}
sort (a+, a+n+);
solve();
}
return ;
}

Codeforces Round #300 F - A Heap of Heaps (树状数组 OR 差分)的更多相关文章

  1. 【Codeforces Round #433 (Div. 1) C】Boredom(树状数组)

    [链接]h在这里写链接 [题意] 给你一个n*n的矩阵. 其中每一列都有一个点. 任意两个点构成了矩形的两个对角点 ->即任意两个点确定了一个矩形. ->总共能确定n*(n-1)/2个矩形 ...

  2. Codeforces Round #301 (Div. 2) E . Infinite Inversions 树状数组求逆序数

                                                                    E. Infinite Inversions               ...

  3. Codeforces Round #381 (Div. 2) D dfs序+树状数组

    D. Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  4. Educational Codeforces Round 87 (Rated for Div. 2) D树状数组加二分删除的值

    Sample Input 5 4 1 2 3 4 5 -5 -1 -3 -1 Sample Output 3 思路,首先发现a[i]的值的范围是在1~n之间,每次插入我们可以直接把cnt[a[i]]+ ...

  5. Codeforces Beta Round #79 (Div. 1 Only) B. Buses 树状数组

    http://codeforces.com/contest/101/problem/B 给定一个数n,起点是0  终点是n,有m两车,每辆车是从s开去t的,我们只能从[s,s+1,s+2....t-1 ...

  6. 8VC Venture Cup 2016 - Final Round (Div. 2 Edition) D. Factory Repairs 树状数组

    D. Factory Repairs 题目连接: http://www.codeforces.com/contest/635/problem/D Description A factory produ ...

  7. 【Codeforces】Gym 101156E Longest Increasing Subsequences LIS+树状数组

    题意 给定$n$个数,求最长上升子序列的方案数 根据数据范围要求是$O(n\log n)$ 朴素的dp方程式$f_i=max(f_j+1),a_i>a_j$,所以记方案数为$v_i$,则$v_i ...

  8. AtCoder Beginner Contest 253 F - Operations on a Matrix // 树状数组

    题目传送门:F - Operations on a Matrix (atcoder.jp) 题意: 给一个N*M大小的零矩阵,以及Q次操作.操作1(l,r,x):对于 [l,r] 区间内的每列都加上x ...

  9. Codeforces 1167 F Scalar Queries 计算贡献+树状数组

    题意 给一个数列\(a\),定义\(f(l,r)\)为\(b_1, b_2, \dots, b_{r - l + 1}\),\(b_i = a_{l - 1 + i}\),将\(b\)排序,\(f(l ...

随机推荐

  1. SQL基础--&gt; 约束(CONSTRAINT)

    --============================= --SQL基础--> 约束(CONSTRAINT) --============================= 一.几类数据完 ...

  2. [Javascript] What is JavaScript Function Currying?

    Currying is a core concept of functional programming and a useful tool for any developer's toolbelt. ...

  3. [Redux] Store Methods: getState(), dispatch(), and subscribe()

    console.clear(); const counter = (state = 0, action) => { switch (action.type) { case 'INCREMENT' ...

  4. 第一篇!in和exists性能比较和使用

    首先,先看下in和exists的区别: in 是把外表和内表作hash 连接: exists是对外表作loop循环,每次loop循环再对内表进行查询. 普遍的观点是exists比in效率高的.但是这不 ...

  5. hdu_1875_畅通工程再续 prim和kruskal

    这个题是个典型的最小生成树的题目,但是刚开始怎么都过不了,后来发现两种写法都有疏忽,但是prim的到目前为止不懂为什么刚开始的不对,kruskal算法,并查集的初始条件从0开始写成从1开始了,所以已知 ...

  6. python运行时间计算之timeit

    timeit.timeit(stmt='pass', setup='pass', timer=<default timer>, number=1000000) stmt:statement ...

  7. SQL存储过程+游标 循环批量()操作数据

    本人收集的,挺有用的 1. 利用游标循环更新.删除MemberAccount表中的数据 DECLARE My_Cursor CURSOR --定义游标 FOR (SELECT * FROM dbo.M ...

  8. CSS中伪类的使用

    原文:http://www.cnblogs.com/guopei/archive/2011/04/16/2017627.html 何为伪类? 也就是实际实现了类的效果,但是并没有实际添加到标签中的类, ...

  9. StrokeStart与StrokeEnd动画

    通过修改CAShapeLayer的StrokeStart与StrokeEnd的值来实现画图动画 效果图: 代码部分: #import "ViewController.h" @int ...

  10. 《Linux内核分析》 week6作业-Linux内核fork()系统调用的创建过程

    一.进程控制块PCB-stack_struct 进程在操作系统中都有一个结构,用于表示这个进程.这就是进程控制块(PCB),在Linux中具体实现是task_struct数据结构,它主要记录了以下信息 ...