栈的数学性质:n个不同元素入栈,出栈元素不同排列的个数的推导,卡特兰数(明安图数)的推导

前言:重在记录,可能出错。
这部分内容借鉴了网络上的一些内容。如:什么是卡特兰数?怎么理解出栈顺序有多少种?(递推式的构造)

一、结论

先说结论,设n个不同元素入栈,出栈元素不同排列的个数为\({f \left( n \right) }\),则\({f \left( n \right) }\)符合以下规律:

1. $ \color{red}{f \left( n \left) =\frac{{1}}{{n+1}}C\mathop{{}}\nolimits_{{\text{ }2n}}^{{\text{ }\text{ }n}}\right. \right. }$

2. \(\color{red}{f \left( n \left) ={\mathop{ \sum }\limits_{{i=1}}^{{n}}{f \left( i-1 \left) *f \left( n-i \right) \right. \right. }}\right. \right. }\)

3.\(\color{red}{f \left( n+1 \left) =\frac{{4n+2}}{{n+2}}f \left( n \right) \right. \right. }\)

二、推导

1.建立x,y平面直角坐标系。

  假设一只小蚂蚁从原点(0,0)出发,将入栈看作向右移动一,出栈看作向上移动一。

  当n个不同元素全部入栈、出栈后,有n次入栈和n次出栈,相当于小蚂蚁爬到(n,n)位置。

  显而易得的,小蚂蚁共有\(\color{red}{C\text{ }\mathop{{}}\nolimits_{{2n}}^{{n}}}\)种不重复的前进路线(小蚂蚁共需移动2n次,选择其中的n次为向右移动一,则剩下的n次为向上移动一)。

  分析,因为栈的特点是只允许在一端进行插入和删除,所以在执行出栈操作时,必须保证栈里存在元素,否则就会抛出栈空异常。即每一步操作,都需要保证此时出栈操作总数≤入栈操作总数。

  反映到坐标系上,即小蚂蚁不能越过y=x线或者不能碰到y=x+1线。

  显而易得的,对于会抛出异常的输出序列,当其首次抛出异常时,恰好首次出现入栈次数为m,出栈次数为m+1,剩余的入栈次数为n-m,出栈次数为n-m-1,后面的路线有\({C\text{ }\mathop{{}}\nolimits_{{2n-2m-1}}^{{n-m}}}\)种。

  \({C\text{ }\mathop{{}}\nolimits_{{2n-2m-1}}^{{n-m}}}\),这是在2n-2m-1次操作中,选取n-m次为入栈操作的意思,显而易得的,这个组合数也可以表示在2n-2m-1次操作中,选取n-m次为出栈操作的意思。将n-m次入栈向右移动一,换成n-m出栈向上移动一,反映到坐标系,即将小蚂蚁首次碰到y=x+1后的路线关于y=x+1作对称。如下图:



  小蚂蚁从(0,0)碰到y=x+1到终点(n,n)就相当于从(0,0)到终点(n-1,n+1)。因此,小蚂蚁所有碰到y=x+1的到(n,n)的路线数就相当于到(n-1,n+1)的路线数,即\(\color{red}{C\text{ }\mathop{{}}\nolimits_{{2n}}^{{n-1}}}\)种。

  小蚂蚁从(0,0)到终点(n,n)且不碰到y=x+1的路线有

\[\begin{array}{*{20}{l}}{C\text{ }\mathop{{}}\nolimits_{{2n}}^{{n}}\text{ }-\text{ }C\text{ }\mathop{{}}\nolimits_{{2n}}^{{n-1}}}\\{=\frac{{ \left( 2n \left) !\right. \right. }}{{n!n!}}\text{ }-\text{ }\frac{{ \left( 2n \left) !\right. \right. }}{{ \left( n-1 \left) ! \left( n+1 \left) !\right. \right. \right. \right. }}}\\{=\frac{{ \left( 2n \left) !\right. \right. }}{{n!n!}}\text{ }-\text{ }\frac{{n}}{{n+1}}\frac{{ \left( 2n \left) !\right. \right. }}{{ \left( n \left) ! \left( n \left) !\right. \right. \right. \right. }}}\\{= \left( 1-\frac{{n}}{{n+1}} \left) \frac{{ \left( 2n \left) !\right. \right. }}{{n!n!}}\right. \right. }\\{=\frac{{1}}{{n+1}}C\text{ }\mathop{{}}\nolimits_{{2n}}^{{n}}}\end{array}
\]

  综上,设n个不同元素进栈,出栈元素不同排列的个数为\({f \left( n \right) }\),则\(\color{red}{{f \left( n \right) }=\frac{{1}}{{n+1}}C\text{ }\mathop{{}}\nolimits_{{2n}}^{{n}}}\)。


2.假设n个不同元素为\({a\mathop{{}}\nolimits_{{1}}\text{ }a\mathop{{}}\nolimits_{{2}} \cdots a\mathop{{}}\nolimits_{{n}}}\),考虑最后一个出栈的元素是谁,是\({a\mathop{{}}\nolimits_{{i}}}\)。

  \({a\mathop{{}}\nolimits_{{i}}}\)最后一个出栈,说明\({a\mathop{{}}\nolimits_{{i}}}\)始终在栈底,即当到\({a\mathop{{}}\nolimits_{{i}}}\)的时候,\({a\mathop{{}}\nolimits_{{1}}\text{ }\text{ }a\mathop{{}}\nolimits_{{2}} \cdots a\mathop{{}}\nolimits_{{i-1}}}\)全部完成了正常的入栈、出栈,给\({a\mathop{{}}\nolimits_{{i}}}\)留了一个空栈,这样的序列有\({f \left( i-1 \right) }\)种;

  \({a\mathop{{}}\nolimits_{{i}}}\)进入栈底后,不动,此时的栈相当于底厚了一点的“空栈”,等\({a\mathop{{}}\nolimits_{{i+1}}\text{ }\text{ }a\mathop{{}}\nolimits_{{i+2}} \cdots a\mathop{{}}\nolimits_{{n}}}\)全部先完成正常的入栈、出栈,序列有\({f \left( n-i \right) }\)种。总共有\({f \left( i-1 \left) *f \left( n-i \right) \right. \right. }\)种序列。

  综上,i的取值为1~n的正整数,所以\(\color{red}{f \left( n \left) ={\mathop{ \sum }\limits_{{i=1}}^{{n}}{f \left( i-1 \left) *f \left( n-i \right) \right. \right. }}\right. \right. }\)


3.我们先算出当n=1,n=2,n=3,n=4,n=5时的\({f \left( n \right) }\)的值,再总结规律,\({f \left( 1 \left) =1,f \left( 2 \left) =2,f \left( 3 \left) =5,f \left( 4 \left) =14,f \left( 5 \left) =42\right. \right. \right. \right. \right. \right. \right. \right. \right. \right. }\)这怎么看规律?就用眼珠子瞪,很简单啊,知道答案,硬凑就行了。!^.^!

\[{\begin{array}{*{20}{l}}{\frac{{f \left( 2 \right) }}{{f \left( 1 \right) }}=\frac{{2}}{{1}},\frac{{f \left( 3 \right) }}{{f \left( 2 \right) }}=\frac{{5}}{{2}},\frac{{f \left( 4 \right) }}{{f \left( 3 \right) }}=\frac{{14}}{{5}},\frac{{f \left( 5 \right) }}{{f \left( 4 \right) }}=\frac{{42}}{{14}}}\\{\frac{{f \left( 2 \right) }}{{f \left( 1 \right) }}=\frac{{6}}{{3}},\frac{{f \left( 3 \right) }}{{f \left( 2 \right) }}=\frac{{10}}{{4}},\frac{{f \left( 4 \right) }}{{f \left( 3 \right) }}=\frac{{14}}{{5}},\frac{{f \left( 5 \right) }}{{f \left( 4 \right) }}=\frac{{18}}{{6}}}\\{\frac{{f \left( n+1 \right) }}{{f \left( n \right) }}=\frac{{6+4 \left( n-1 \right) }}{{n+2}}=\frac{{4n+2}}{{n+2}}}\\{f \left( n+1 \left) =\frac{{4n+2}}{{n+2}}f \left( n \right) \right. \right. }\end{array}}
\]

  综上,$\color{red} {f\left( n+1 \left) =\frac{{4n+2}}{{n+2}}f \left( n \right) \right. \right.} $

栈的数学性质:n个不同元素入栈,出栈元素不同排列的个数的推导,卡特兰数(明安图数)的推导的更多相关文章

  1. 设计一个栈,设计一个max()函数,求当前栈中的最大元素

    #include <iostream> using namespace std; #define MAXSIZE 256 typedef struct stack { int top; i ...

  2. flask 源码专题(三):请求上下文和应用上下文入栈与出栈

    1.请求上下文和应用上下文入栈 # 将ctx入栈,但是内部也将应用上下文入栈 ctx.push() def push(self): # 获取到的 top == ctx top = _request_c ...

  3. JVM字节码之整型入栈指令(iconst、bipush、sipush、ldc)

    官网:http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html 原文地址:http://www.linmuxi.com/2016/02 ...

  4. [置顶] 栈/入栈/出栈顺序(c语言)-linux

    说明: 1.栈底为高地址,栈顶为低地址. 2.入栈顺序:从右到左. 解释1:栈在内存中的结构 [注:0x00 到 0x04之间间隔4个地址] 入栈:指针先指向0x10,从高地址向低地址方向填数值,最终 ...

  5. 003-整型入栈指令(iconst、bipush、sipush、ldc)

    一.概述 官网:http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html参考地址:http://www.linmuxi.com/201 ...

  6. Internet 校验和的数学性质

    Internet 校验和(Checksum)仅计算头部的正确性,这一点很重要,这意味着 IP 协议不检查 IPv4 packet 有效载荷部分的数据正确性.为了保证有效载荷部分的正常传输,其他协议必须 ...

  7. n个元素的入栈顺序有多少种出栈顺序?

    问题:w1.w2.w3.w4.w5,5个元素将会按顺序入栈,求出栈顺序有多少种情况. 先写一下结论方便记忆: 1个元素:1种 2个元素:2种 3个元素:5种 4个元素:14种 5个元素:42种 简单的 ...

  8. 问题-栈S最多能容纳4个元素,现有6个元素按A、B、C、D、E、F顺序进栈,问可能的出栈顺序。

    住栈的特性:对于取出栈内元素每次只能从栈顶开始取(后进先出(栈满时,只能先出后进)) 由于栈内只能容纳4个元素: 所以 E F不可能第一个出栈: 当栈内少于四个元素时 既可以选择进栈,也可以选择出栈 ...

  9. C语言数据结构-链式栈的实现-初始化、销毁、长度、取栈顶元素、查找、入栈、出栈、显示操作

    1.数据结构-链式栈的实现-C语言 //链式栈的链式结构 typedef struct StackNode { int data; struct StackNode *next; } StackNod ...

  10. C语言数据结构-栈的实现-初始化、销毁、长度、取栈顶元素、查找、入栈、出栈、显示操作

    1.数据结构-栈的实现-C语言 #define MAXSIZE 100 //栈的存储结构 typedef struct { int* base; //栈底指针 int* top; //栈顶指针 int ...

随机推荐

  1. python模块的含义

    目录 模块简介 模块的本质 python模块的历史 python模块的表现形式 模块的分类 导入模块的两种句式 强调 import句式 import流程推导 练习 from...import...句式 ...

  2. 如何使用 System.Text.Json 序列化 DateTimeOffset 为 Unix 时间戳

    在 .NET 中,日期和时间通常使用 DateTime 或 DateTimeOffset 来表示.这两种数据类型都可以表示日期和时间,但它们之间有一些明显的区别.DateTime 是不带时区信息的,而 ...

  3. vuex的使用详解

    一.下载vuex 在store文件夹下的index.js中    官方文档:https://vuex.vuejs.org/zh/ 需要使用的页面 sotre中 mutations的调用方法 store ...

  4. ClickHouse数据副本引擎

    我的gitee地址:https://gitee.com/ddxygq/bigdata-technical-pai ,相关文章都放到这个仓库里了. 只有 MergeTree 系列里的表可支持副本: Re ...

  5. C#调用接口的简单流程

    1.编写url地址 string url="http://192.168"; 2.创建http请求对象 HttpWebRequest request = (HttpWebReque ...

  6. [cocos2d-x]关于屏幕适配

    第一步:理解屏幕分辨率和设计分辨率 通过这个图可以很容易理解,设计分辨率就是你能够进行纹理绘制的大小,而屏幕分辨率就是你的画框大小.而两者之间的适配,通过cocos2dx自带的几种适配方案来进行适配, ...

  7. 题解CF893C Rumor

    思路 竟然朋友之间可以传递故事,那么,我们设两两有间接或直接的朋友关系的为一个友好集合,那么我们只要每一个友好集合买一次就好了. 那应该怎么买呢?由于题面让我们求的是[最少的价钱],那我们可以考虑每一 ...

  8. Mac上安装brew的那些坑

    macOS11.1 入坑! 网上看了一下午的帖子,包括官网,重装command line tool,修改brew_install文件,报错443,Faild during:git getch错误 脱坑 ...

  9. day14-JdbcTemplate-01

    JdbcTemplate-01 看一个实际需求: 如果希望使用spring框架做项目,Spring框架如何处理对数据库的操作呢? 方案一:使用之前的JdbcUtils类 方案二:spring提供了一个 ...

  10. IO多路复用完全解析

    上一篇文章以近乎啰嗦的方式详细描述了BIO与非阻塞IO的各种细节.如果各位还没有读过这篇文章,强烈建议先阅读一下,然后再来看本篇,因为逻辑关系是层层递进的. 1. 多路复用的诞生 非阻塞IO使用一个线 ...