BSOJ5086题解
题意略。
我们设 \([x^k]G_n(x)\) 代表深度为 \(n\) 的树,距离为 \(k\) 的点对数量,\([x^k]F_n(x)\) 为深度为 $ n $ 的树中,深度为 \(k\) 的节点数量。
首先列出转移式:
\]
稍微替换一下可以得到 \(F_n(x)=xF_{n-1}(x)+x^2F_{n-2}(x)+x-x^2\)。
然后来看一下 \(G_n(x)\) 应该如何推导。
容易发现每个黑色节点都在一条黑色节点组成的链上,且每个黑色节点一定挂着一个白色节点。
于是我们考虑通过这条链进行对 \(G_n(x)\) 的转移。
容易发现:
\]
使用类似推导 \(F_n(x)\) 的方法,可以得到
\]
直接使用多项式转移可以得到 \(80pts\)。
我们考虑动态维护 \(F_{n-1}(x)F_{n-2}(x)\),这样就不需要计算多项式乘法了。
容易发现 \(F_n(x)\) 实际上是对斐波那契数列的生成函数稍微修改后截取前 \(n+1\) 项。
设 \(\delta_n(x)=F_n(x)F_{n-1}(x)-F_{n-1}(x)F_{n-2}(x)=F_{n-1}(x)(F_n(x)-F_{n-2}(x))\)。
容易发现 \(\delta_n(x)\) 是一个只有两项的多项式和一个 \(n\) 次多项式卷积的结果,可以 \(O(n)\) 被计算出来。
于是 \(G_n(x)\) 就可以被 \(O(n)\) 计算了,能够达到 \(O(n^2)\) 的复杂度。
如果要优化到 \(O(n)\) 的空间复杂度,可以计算每一项个多项式的贡献,贡献可以通过斐波那契数列计算。
BSOJ5086题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- 【转】性能测试报告模板 V1.0
1. 测试项目概述与测试目的 1.1 项目概述 本部分主要是针对即将进行压力测试的对象(接口.模块.进程或系统)进行概要的说明,让人明白该测试对象的主要功能与作用及相关背景. 1.2 测试目标 简 ...
- kubectl详解
kubectl详解 目录 kubectl详解 一.陈述式管理 1. 陈述式资源管理方法 2. k8s相关信息查看 2.1 查看版本信息 2.2 查看资源对象简写 2.3 查看集群信息 2.4 配置ku ...
- C++实现对Json数据的友好处理
背景 C/C++客户端需要接收和发送JSON格式的数据到后端以实现通讯和数据交互.C++没有现成的处理JSON格式数据的接口,直接引用第三方库还是避免不了拆解拼接.考虑到此项目将会有大量JSON数据需 ...
- MySQL基本命令语法之select
目录 MySQL基本命令语法之select 查询去重以及常数 空值与着重号 着重号 空值 运算符 算术运算符 比较运算符 符号型 非符号型 逻辑运算符 优先级 排序分页 排序 分页 拓展 多表查询 等 ...
- pycharm关闭pytest
在pycharm中,如果py文件以 test 开头,则运行时会使用pytest执行,pycharm关闭pytest方式如下 File -> Settings -> Tools -> ...
- JavaEE复制后项目出错或者无法运行的解决方法
eclipse中,直接复制项目,会出现一些错误,解决方法如下: 1,在复制后的工程上点右键->properties->Web Project Settings>web context ...
- 基于SSM风格的Java源代码生成器
一.序言 UCode Cms 是一款Maven版的Java源代码生成器,是快速构建项目的利器.代码生成器模块属于可拆卸模块,即按需引入.代码生成器生成SSM(Spring.SpringBoot.Myb ...
- Solution -「HDU #6566」The Hanged Man
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个点的树,每个结点有两个权值 \(a\) 和 \(b\).对于 \(k\in[1,m]\),分别求 \[ ...
- C# 不区分大小写替换文本
C# .NET类库自带的str.Replace() 方法替换文本不能区分大小写.我们可以自己编写一个扩展方法,支持文本忽略大小写替换.以下扩展方法实现了使用正则表达式忽略大小写替换文本. public ...
- 【lwip】lwip源码基础
目录 前言 概念&作用 网络接口 概念引入 总结 lwip netif 结构体 链接 字段分析 网卡链表 网络 IP 接收数据函数 发送数据函数 ARP 模块调用的发送函数 出口回调函数 用户 ...