一、组成

1、架构

源数据原本是存在dubby数据库,存在MySQL可以支持多个客户端

客户端、数据存储(HDFS)、MR计算引擎

2、计算引擎的选择

MR引擎:基于磁盘,计算时间长,但一定能算出结果【一般用于计算周指标、月指标、年指标,一个任务3-5天】

tez引擎:基于内存,计算时间快,如果宕机,数据直接丢掉【一般用于临时调试,但容易出现OOM】

Spark引擎:既基于内存,也会落盘,居中【一般用于每天的定时任务】

二、与MySQL/Hbase的区别

          hive                  MySQL          Hbase

1、数据量大小            大         小

2、速度                    数据量大/快      数据量小/慢

3、擅长      查询     增删改查     擅长插入不擅长查询

三、内部表和外部表的区别【出现频率最高&最简单】

1、最重要-元数据、原始数据

删除数据的时候,内部表会将元数据和原始数据全部删除,外部表只会删除元数据,原始数据不会被删除

2、在公司生产环境下,什么情况创建内部表,什么情况创建外部表

先导入hdfs,再将hdfs与hive表进行关联

绝大多数场景都是创建外部表【多个人共同使用】

只有在自己使用的临时表时,才会创建内部表

四、四个by

1、用法

order by:全局排序,针对自己用的临时表

sort by:排序

distribute by:分区

c:排序和分区字段相同时使用

5、在生产环境下

是否使用order by

不用,全局排序,数据量比较大

京东40-50T内存,都会OOM

s+d用的比较多:主要是在分区内部进行排序,效果最佳

c用的也会比较少

五、函数

1、系统函数

时间相关(日、月、周的处理)

日:date_add date_sub

周:next_day

月:date_format last_day

解析json☆:get_json_object

2、自定义函数

(1)组成

自定义UDF:项目中使用UDF解析公共字段

自定义UDTF:项目中使用UDTF解析具体的事件字段

自定义UDAF(spark)

(2)如果项目中不使用UDAF和UDTF能否对数据解析?

可以用系统函数,get_json_object【不定义】

(3)用系统函数能解决,为什么还要自定义

如果使用系统函数,解析失败只会抛出异常,不会抛出因为什么原因没解析出来

而自定义的方式,可以将每一个过程日志打印出来【更灵活,方便调试】

(4)自定义UDF步骤

定义一个类,继承UDF,重写内部的evaluate方法(实现其业务逻辑)

(5)自定义UDTF的步骤

定义一个类,继承GenericUDTF,重写内部的初始化、process、stop

(5)使用步骤

打包 =》上传到集群 =》在hive里面创建永久函数

3、窗口函数☆

rank

over

需要手写topn☆(使用开窗的方式)

六、Hive的优化

1、mapjoin

默认是打开的,不要关闭

2、行列过滤

出题形式,join where==》优化后先where后join

能提前过滤就提前过滤,再进行join操作

3、创建分区表

分桶【少】:对数据不太清楚时(不同key数据量不同,将key打散,对数据分组采样,)【分区表的优化手段】

分区表更常见

4、小文件处理

combinInputformat减少切片,进而减少map task,从而减少内存分配

开启JVM重用

采用merge的方式:

针对maponly的任务,默认打开-执行完任务后,会将小于16M的文件合并到256M(hive的块大小)

针对MapReduce任务,需要打开merge功能

5、合理设置map个数和reduce个数

map个数怎么设置:切片的大小-规则为max(0, min(块大小, Long的最大值))

128M数据对应1G内存

6、压缩

好处:减少磁盘所占的空间,减少网络传输

坏处:增加了解压缩计算

7、采用列式存储ORC/parquet

好处:提高查询效率,提高压缩比例 100G==> 10G ==》5-6G

如:

id         name       age

1       zhangsan     15

2           lisi             18

行存:1       zhangsan     15,2           lisi             18

select age from user,属于随机存储

列式存储:1  2    zhangsan lisi   15 18

select age from user,直接取 15 18,属于顺序读写

8、在reduce端开启combiner

要求不能影响最终的业务逻辑

七、数据倾斜

1、数据倾斜的表现

hql发生在reduce聚合时

2、什么情况下会产生数据倾斜

不同数据类型关联产生数据倾斜(用户表中的id为int类型,log表中定义的用户id是string类型,两张表进行join操作时,数据不匹配,所有数据进入同一个reduce,其他都为空)

解决方式:

3、如何解决数据倾斜

(1)group by由于distinct group by

(2)在map端对数据进行join

(3)开启数据倾斜时负载均衡

数据倾斜时,对reduce任务拆分,加随机数把数据打散,拆成多个reduce

将多个执行的reduce重新聚合,按照groupby,将同一个key的聚合为一个reduce

(4)控制数据分布,避免数据倾斜【类型不一致/空值】

默认值为空数据的值很大,可以在后面加随机数

将空值的分配一个特殊的值

八、hql练习

1、用的是动态分区吗,动态分区的底层原理

静态分区

insert  overwrite table1 patition(dt=2021-12-14)

select age, name from user

动态分区

insert  overwrite table1 patition(dt)

select age, name,dt from user

select age, name,'2021-12-14' from user

2、各自特点

静态是编译期时用户传递过来的

动态分区是执行SQL语句的时候才会决定(动态添加的值)

3、hive的字段分隔符

默认分隔符是\001,即^A

咱们使用的是\t

能否采用\abc作为分隔符

能,按照规范,前面不要出现这些字段,

如果出现,会产生什么后果

抛异常、类型不匹配(转换异常)

出现了,要对其进行转义,转义为普通的字符

【大数据面试】【框架】Hive:架构、计算引擎、比较、内外部表、by、函数、优化、数据倾斜、动静态分区的更多相关文章

  1. hive,分桶,内外部表,分区

    简单的word-count操作: [root@master test-map]# head -10 The_Man_of_Property.txt    #先看看数据Preface“The Forsy ...

  2. Hive:动静态分区

    http://hugh-wangp.iteye.com/blog/1612268 http://blog.csdn.net/opensure/article/details/46537969 使用静态 ...

  3. FastAPI框架入门 基本使用, 模版渲染, form表单数据交互, 上传文件, 静态文件配置

    安装 pip install fastapi[all] pip install unicorn 基本使用(不能同时支持,get, post方法等要分开写) from fastapi import Fa ...

  4. 入门大数据---Hive计算引擎Tez简介和使用

    一.前言 Hive默认计算引擎时MR,为了提高计算速度,我们可以改为Tez引擎.至于为什么提高了计算速度,可以参考下图: 用Hive直接编写MR程序,假设有四个有依赖关系的MR作业,上图中,绿色是Re ...

  5. 揭秘阿里云EB级大数据计算引擎MaxCompute

    日前,全球权威咨询与服务机构Forrester发布了<The Forrester WaveTM: Cloud Data Warehouse, Q4 2018>报告.这是Forrester ...

  6. 大数据技术之Hive

    第1章 Hive入门 1.1 什么是Hive Hive:由Facebook开源用于解决海量结构化日志的数据统计. Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提 ...

  7. 奇点云数据中台技术汇(三)| DataSimba系列之计算引擎篇

    随着移动互联网.云计算.物联网和大数据技术的广泛应用,现代社会已经迈入全新的大数据时代.数据的爆炸式增长以及价值的扩大化,将对企业未来的发展产生深远的影响,数据将成为企业的核心资产.如何处理大数据,挖 ...

  8. 【大数据面试】Hbase:数据、模型结构、操作、读写数据流程、集成、优化

    一.概述 1.概念 分布式.可扩展.海量数据存储的NoSQL数据库 2.模型结构 (1)逻辑结构 store相当于某张表中的某个列族 (2)存储结构 (3)模型介绍 Name Space:相当于数据库 ...

  9. 【HBase】简介、结构、数据模型、快速入门部署、shell操作、架构原理、读写数据流程、数据刷写、压缩、分割、Phoenix、表的映射、与hive集成、优化

    一.简介 1.定义 分布式.可扩展.支持海量数据存储的NoSQL数据库 2.数据模型 2.1逻辑结构 2.2物理存储结构 2.3数据模型介绍 Name Space:相当于数据库,包含很多张表 Regi ...

随机推荐

  1. 讲讲 tcp_tw_recycle,tcp_tw_reuse

    文章转载自:https://mp.weixin.qq.com/s?__biz=MzI1MDgwNzQ1MQ==&mid=2247485332&idx=1&sn=59823ce1 ...

  2. Elasticsearch:Smart Chinese Analysis plugin

    Smart Chinese Analysis插件将Lucene的Smart Chinese分析模块集成到Elasticsearch中,用于分析中文或中英文混合文本. 支持的分析器在大型训练语料库上使用 ...

  3. 使用ConfigMap配置您的应用程序

    转载自:https://kuboard.cn/learning/k8s-intermediate/config/config-map.html ConfigMap 作为 Kubernetes API ...

  4. vue3基础

    什么是CDN? 内容分发网络--通过相互链接的网络系统,利用最靠近用户的服务器,更快更可靠的发送给用户. vue的cdn引入 method中的函数为什么不能用this? this的主要使用是来获取da ...

  5. @input含义和用法

    @input :一般用于监听事件只要输入的值变化了就会触发input 示例: <div id="div1"> <input type="text&quo ...

  6. POJ2686 Traveling by Stagecoach (状压DP)

    将车票的使用情况用二进制表示状态,对其进行转移即可. 但是我一开始写的代码是错误的(注释部分),看似思路是正确的,但是暗藏很大的问题. 枚举S,我们要求解的是dp[S][v],这个是从u转移过来的,不 ...

  7. Springboot集成阿里云短信

    目录 1 前言 2 准备工作 2.1 了解流程 2.2 配置信息 2.3 短信签名和模板 2.3.1 签名 2.3.2 模板 2.3.3 存入数据库 3 SDK 4 集成Springboot 4.1 ...

  8. 使用 Spring Security 手动验证用户

    1.概述 在这篇快速文章中,我们将重点介绍如何在 Spring Security 和 Spring MVC 中手动验证用户的身份. 2.Spring Security 简单地说,Spring Secu ...

  9. 【翻译】Raft 共识算法:集群成员变更

    转载请注明出处:https://www.cnblogs.com/morningli/p/16770129.html 之前都在集群配置是固定的(参与共识算法的server集合)假设下讨论raft.在实践 ...

  10. 我的Vue之旅 06 超详细、仿 itch.io 主页设计(Mobile)

    第二期 · 使用 Vue 3.1 + TypeScript + Router + Tailwind.css 仿 itch.io 平台主页. 我的主题 HapiGames 是仿 itch.io 的 in ...