图解B树及C#实现(2)数据的读取及遍历
前言
本文为系列文章
- B树的定义及数据的插入
- 数据的读取及遍历(本文)
- 数据的删除
前一篇文章为大家介绍了 B树 的基本概念及其插入算法。本文将基于前一篇的内容,为大家介绍插入到 B树 中的数据该怎么读取及遍历,
本文的代码基于前一篇文章的代码,已经实现的功能可能会被省略,只介绍新增的功能。
在本文开始前,再次复习下 B树 的顺序特性:
- 每个 节点 中的 Item 按 Key 有序排列(规则可以是自定义的)。
- 升序排序时,每个 Item 左子树 中的 Item 的 Key 均小于当前 Item 的 Key。
- 升序排序时,每个 Item 右子树 中的 Item 的 Key 均大于当前 Item 的 Key。
理解数据的顺序性对本文的理解至关重要。
查询数据
算法说明
B树 是基于二分查找算法进行设计的,某些资料中你也会看到用 多路搜索树 来归类 B树。
在 B树 中查找数据时,二分体现在两个方面:
- 在节点中查找数据时,使用二分查找算法。
- 当节点中找不到数据时,使用二分查找算法找到下一个节点。
具体的查找过程如下:
- 从根节点开始,在节点中使用二分查找算法查找数据。
- 如果没有找到数据,则根据查找的 Key 值与节点中的 Key 值的大小关系,决定下一个节点的位置。
- 重复步骤 1 和 2,直到找到数据或者找到叶子节点。如果在叶子节点中也没有找到数据,则说明数据不存在。
举例说明:
在下面的 B树 中,查找 Key 为 8 的数据。
- 从根节点开始,使用二分查找算法没有找到数据
- 根据 Key 值与节点中的 Key 值的大小关系,决定下一个节点的位置应该在 6 和 9 之间,也就是 6 的右子树。
- 在 6 的右子树中,使用二分查找算法找到了数据。
代码实现
前一篇文章我们定义了 Items 类,用于存储节点中的数据,并且在一开始就定义了一个二分查找算法,用于在 Items 查找 Item。
前一篇用它来找到合适的插入位置,现在我们用寻找已经存在的数据。
在当前节点找到 Item 时,index 对应的就是 Item 的位置。没找到时则代表下一个子树的索引。
理解代码时请参考下图:
internal class Items<TKey, TValue>
{
public bool TryFindKey(TKey key, out int index)
{
if (_count == 0)
{
index = 0;
return false;
}
// 二分查找
int left = 0;
int right = _count - 1;
while (left <= right)
{
int middle = (left + right) / 2;
var compareResult = _comparer.Compare(key, _items[middle]!.Key);
if (compareResult == 0)
{
index = middle;
return true;
}
if (compareResult < 0)
{
right = middle - 1;
}
else
{
left = middle + 1;
}
}
index = left;
return false;
}
}
在 Node 中,我们需要找到合适的子树,然后递归调用子节点的 TryFind 方法。
internal class Node<TKey, TValue>
{
public bool TryFind(TKey key, out Item<TKey, TValue?> item)
{
if (_items.TryFindKey(key, out int index))
{
item = _items[index];
return true;
}
if (IsLeaf)
{
item = default!;
return false;
}
return _children[index].TryFind(key, out item);
}
}
BTree 类中,我们只需要调用根节点的 TryFind 方法即可。
public sealed class BTree<TKey, TValue> : IEnumerable<KeyValuePair<TKey, TValue?>>
{
public bool TryGetValue([NotNull] TKey key, out TValue? value)
{
ArgumentNullException.ThrowIfNull(key);
if (_root == null)
{
value = default;
return false;
}
if (!_root.TryFind(key, out var item))
{
value = default;
return false;
}
value = item.Value;
return true;
}
}
查询最值
算法说明
B树的顺序性使得我们可以很方便的找到最值。
- 最小值:从根节点开始,一直往左子树走,直到叶子节点。
- 最大值:从根节点开始,一直往右子树走,直到叶子节点。
可以看到,B树 寻找最值的时间复杂度只和树的高度有关,而不是数据的个数,如果树的高度为 h,那么时间复杂度为 O(h)。只要树的 度(degree) 足够,每层能放的数据其实是很多的,那么树的高度就会很小,查询最值的时间复杂度也很小。
代码实现
internal class Node<TKey, TValue>
{
public Item<TKey, TValue?> Max()
{
// 沿着右子树一直走,直到叶子节点,叶子节点的最大值就是最大值
if (IsLeaf)
{
return _items[ItemsCount - 1];
}
return _children[ChildrenCount - 1].Max();
}
public Item<TKey, TValue?> Min()
{
// 沿着左子树一直走,直到叶子节点,叶子节点的最小值就是最小值
if (IsLeaf)
{
return _items[0];
}
return _children[0].Min();
}
}
BTree 类中,我们只需要调用根节点的 Max 和 Min 方法即可。
public sealed class BTree<TKey, TValue> : IEnumerable<KeyValuePair<TKey, TValue?>>
{
public KeyValuePair<TKey, TValue?> Max()
{
if (_root == null)
{
throw new InvalidOperationException("BTree is empty.");
}
var maxItem = _root.Max();
return new KeyValuePair<TKey, TValue?>(maxItem.Key, maxItem.Value);
}
public KeyValuePair<TKey, TValue?> Min()
{
if (_root == null)
{
throw new InvalidOperationException("BTree is empty.");
}
var minItem = _root.Min();
return new KeyValuePair<TKey, TValue?>(minItem.Key, minItem.Value);
}
}
B树的遍历
算法说明
B树的遍历和二叉树的遍历是相通的,都可以分为深度遍历和广度遍历。深度遍历又分为先序遍历、中序遍历和后序遍历。
本文将以中序遍历为例介绍 B树 的遍历,通过中序遍历可以对 B树 中的数据从小到大进行排序。
其他遍历方式的也都可以理解成 二叉树 遍历方式的拓展,有兴趣的读者朋友可以自行尝试实现一下。
不过,B树的遍历和二叉树的遍历还是有一些区别的,我们先来看一下二叉树的中序遍历。
二叉树的中序遍历分为下面几步:
- 先遍历左子树。
- 访问当前节点。
- 遍历右子树。
在每个子树中,重复上面的步骤。
以下面的二叉树为例再次说明一遍:
先遍历 8 的左子树 T1
在 T1 中先遍历 4 的左子树 T2
在 T2 中先遍历 2 的左子树,只有一个节点,直接访问 1,
在 T2 中访问 2
在 T2 中遍历 2 的右子树,只有一个节点,直接访问 3,T2 遍历完毕
在 T1 中访问 4
在 T1 中遍历 4 的右子树 T3
... 以此类推,直到遍历完整棵树。
B树的中序遍历也是类似的,只不过 B树 的节点中有多个 Item 和 多个 子树,我们需要遍历每个 Item 的 左右子树以及 Item 。
B树的中序遍历分为下面几步:
- 遍历节点中的第一个子树,也就是第一个 Item 的左子树。
- 遍历节点中的第一个 Item。
- 遍历节点中的第二个子树,也就是第一个 Item 的右子树。
- 直至遍历完所有的 Item,遍历节点中的最后一个子树。
在每个子树中,重复上面的步骤。
如下图所示,我们以中序遍历的方式遍历 B树,会先遍历 3 的左子树,然后访问 3,再遍历 3 的右子树,直至遍历完 9 的右子树。
代码实现
遍历每个节点的 Item 和 子树,我们可以使用递归的方式实现,代码如下:
internal class Node<TKey, TValue>
{
public IEnumerable<Item<TKey, TValue?>> InOrderTraversal()
{
var itemsCount = ItemsCount;
var childrenCount = ChildrenCount;
if (IsLeaf)
{
for (int i = 0; i < itemsCount; i++)
{
yield return _items[i];
}
yield break;
}
// 左右子树并不是相当于当前的 node 而言,而是相对于每个 item 来说的
for (int i = 0; i < itemsCount; i++)
{
if (i < childrenCount)
{
foreach (var item in _children[i].InOrderTraversal())
{
yield return item;
}
}
yield return _items[i];
}
// 最后一个 item 的右子树
if (childrenCount > itemsCount)
{
foreach (var item in _children[childrenCount - 1].InOrderTraversal())
{
yield return item;
}
}
}
}
BTree 实现了 IEnumerable 接口,以便我们可以使用 foreach 循环来遍历 BTree 中的所有 Item,其代码只要调用 Node 的 InOrderTraversal 方法即可:
public sealed class BTree<TKey, TValue> : IEnumerable<KeyValuePair<TKey, TValue?>>
{
public IEnumerator<KeyValuePair<TKey, TValue?>> GetEnumerator()
{
foreach (var item in _root!.InOrderTraversal())
{
yield return new KeyValuePair<TKey, TValue?>(item.Key, item.Value);
}
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
Benchmarks
最后,我们来看一下 Degree 对 BTree 的性能的影响。
注意,我们这里只考虑 B树的数据量远大于 Degree 的情况。
我们使用 BenchmarkDotNet 来测试,测试代码如下:
public class BTreeWriteBenchmarks
{
[Params(2, 3, 4, 5, 6)] public int Degree { get; set; }
private HashSet<int> _randomKeys;
[GlobalSetup]
public void Setup()
{
_randomKeys = new HashSet<int>();
var random = new Random();
while (_randomKeys.Count < 1000)
{
_randomKeys.Add(random.Next(0, 100000));
}
}
[Benchmark]
public void WriteSequential()
{
var bTree = new BTree<int, int>(Degree);
for (var i = 0; i < 1000; i++)
{
bTree.Add(i, i);
}
}
[Benchmark]
public void WriteRandom()
{
var bTree = new BTree<int, int>(Degree);
foreach (var key in _randomKeys)
{
bTree.Add(key, key);
}
}
}
public class BenchmarkConfig : ManualConfig
{
public BenchmarkConfig()
{
Add(DefaultConfig.Instance);
Add(MemoryDiagnoser.Default);
ArtifactsPath = Path.Combine(AppContext.BaseDirectory, "artifacts", DateTime.Now.ToString("yyyy-mm-dd_hh-MM-ss"));
}
}
new BenchmarkSwitcher(new[]
{
typeof(BTreeReadBenchmarks),
}).Run(args, new BenchmarkConfig());
我们测试了 4 项性能指标,分别是顺序读、随机读、最小值、最大值、遍历,测试结果如下:
可以看到,在相同的数据量下,Degree 越大,性能越好,这是因为 Degree 越大,BTree 的高度越小,所以每次查找的时候,需要遍历的节点越少,性能越好。
但是不是真的 Degree 越大就越好呢,我们再来看下写入性能的测试结果:
public class BTreeWriteBenchmarks
{
[Params(2, 3, 4, 5, 6)] public int Degree { get; set; }
private HashSet<int> _randomKeys;
[GlobalSetup]
public void Setup()
{
_randomKeys = new HashSet<int>();
var random = new Random();
while (_randomKeys.Count < 1000)
{
_randomKeys.Add(random.Next(0, 100000));
}
}
[Benchmark]
public void WriteSequential()
{
var bTree = new BTree<int, int>(Degree);
for (var i = 0; i < 1000; i++)
{
bTree.Add(i, i);
}
}
[Benchmark]
public void WriteRandom()
{
var bTree = new BTree<int, int>(Degree);
foreach (var key in _randomKeys)
{
bTree.Add(key, key);
}
}
}
测试结果如下:
可以看到,Degree 越大,写入性能也越好,每个节点的容量够大,需要分裂的次数就变少了。
总结
- B树是一种多路平衡查找树,可以基于二分查找的思路来查询数据。
- B树的数据量远大于 Degree 的情况下,B树的 Degree 越大,读写性能越好。如果是磁盘中的实现,每个节点要考虑到磁盘页的大小,Degree 会有上限。
参考资料
Google 用 Go 实现的内存版 B树 https://github.com/google/btree
图解B树及C#实现(2)数据的读取及遍历的更多相关文章
- InnoDB一棵B+树可以存放多少行数据?
一个问题? InnoDB一棵B+树可以存放多少行数据?这个问题的简单回答是:约2千万.为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构.数据组织方式说起. 我 ...
- 面试题:InnoDB中一棵B+树能存多少行数据?
阅读本文大概需要 5 分钟. 作者:李平 | 来源:个人博客 一.InnoDB 一棵 B+ 树可以存放多少行数据? InnoDB 一棵 B+ 树可以存放多少行数据? 这个问题的简单回答是:约 2 千万 ...
- MySQL(四)InnoDB中一棵B+树能存多少行数据
一.InnoDB一棵B+树可以存放多少行数据?(约2千万) 我们都知道计算机在存储数据的时候,有最小存储单元,这就好比我们今天进行现金的流通最小单位是一毛.在计算机中磁盘存储数据最小单元是扇区,一个扇 ...
- innodb中一颗B+树能存储多少条数据
如图,为B+树组织数据的方式: 实际存储时当然不会每个节点只存3条数据. 以InnoDB引擎为例,简单计算一下一颗B+树可以存放多少行数据. B+树特点:只有叶子节点存储数据,而非叶子节点存放的是用来 ...
- ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法
ORACLE 查询一个数据表后通过遍历再插入另一个表中的两种写法 语法 第一种: 通过使用Oracle语句块 --指定文档所有部门都能查看 declare cursor TABLE_DEPT and ...
- 【干货】如何通过OPC自定义接口来实现客户端数据的读取?
上篇博文分享了我的知识库,被好多人关注,受宠若惊.今天我把我在项目中封装的OPC自定义接口的程序分享一下.下面将会简单简单介绍下OPC DA客户端数据访问,以及搭配整个系统的运行环境. OPC(OLE ...
- SARscape5.2哨兵1A数据的读取
SARscape5.2支持哨兵1A数据的读取,支持的数据类型有: SM SLC ——条带模式的斜距单视复数产品 IW SLC——干涉宽幅模式(TOPS Mode)的斜距单视复数产品 EW SLC——超 ...
- sa命令从/var/account/pacct原始记账数据文件读取信息并汇总
sa命令从/var/account/pacct原始记账数据文件读取信息并汇总
- Android JSON数据的读取和创建
预先准备好的一段JSON数据 { "languages":[ {"id":1,"ide":"Eclipse"," ...
- 解决SpringMVC拦截器中Request数据只能读取一次的问题
解决SpringMVC拦截器中Request数据只能读取一次的问题 开发项目中,经常会直接在request中取数据,如Json数据,也经常用到@RequestBody注解,也可以直接通过request ...
随机推荐
- C#-8 数组
一 关于数组 数组是由一个变量名称表示的一组同类型的数据元素.数组中的元素通过变量名和方括号索引来访问. int[] intArray = new int[] { 1, 2, 3 }; //声明了一个 ...
- 通过linux-PAM实现禁止root用户登陆的方法
前言 在linux系统中,root账户是有全部管理权限的,一旦root账户密码外泄,对于服务器而言将是致命的威胁:出于安全考虑,通常会限制root账户的登陆,改为配置普通用户登陆服务器后su切换到ro ...
- A-卷积网络压缩方法总结
卷积网络的压缩方法 一,低秩近似 二,剪枝与稀疏约束 三,参数量化 四,二值化网络 五,知识蒸馏 六,浅层网络 我们知道,在一定程度上,网络越深,参数越多,模型越复杂,其最终效果越好.神经网络的压缩算 ...
- 『现学现忘』Git基础 — 35、Git中删除文件
目录 1.删除文件说明 2.删除文件操作 (1)仅删除暂存区的文件 (2)完全删除文件 3.本文用到的命令总结 1.删除文件说明 在Git工作目录中要删除某个文件,首先要清楚该文件所处的状态. 若要是 ...
- <五>掌握左值引用和初识右值引用
1:C++的引用,引用和指针的区别? 1:从汇编指令角度上看,引用和指针没有区别,引用也是通过地址指针的方式访问指向的内存 int &b=a ; 是需要将a的内存地址取出并存下来, b=20; ...
- kubernetes VS OpenShift浅析
Kubernetes vs OpenShift浅析 古语有云:"知彼知己,百战不殆.不知彼而知己,一胜一负.不知彼,不知己,每战必殆." 这句话同样也适用于技术体系.无论我们在落地 ...
- 详解AQS中的condition源码原理
摘要:condition用于显式的等待通知,等待过程可以挂起并释放锁,唤醒后重新拿到锁. 本文分享自华为云社区<AQS中的condition源码原理详细分析>,作者:breakDawn. ...
- Sqlite 安装操作使用
一.什么是 SQLite 数据库 SQLite 是嵌入式SQL数据库引擎.与大多数其他 SQL 数据库不同,SQLite 没有单独的服务器进程.SQLite 直接读取和写入普通磁盘文件.具有多个表,索 ...
- java反序列化漏洞cc_link_one
CC-LINK-one 前言 这里也正式进入的java的反序列化漏洞了,简单介绍一下CC是什么借用一些官方的解释:Apache Commons是Apache软件基金会的项目,曾经隶属于Jakarta项 ...
- java学习之IO流
java io流有四大家族分别是: 1.InputStream(字节输入流) 2.OutputStream(字节输入出流)3.Reader(字符输入流)4.Writer(字符输出流)四个类都是抽象类 ...