摘要:MindStudio的是一套基于华为自研昇腾AI处理器开发的AI全栈开发工具平台,该IDE上功能很多,涵盖面广,可以进行包括网络模型训练、移植、应用开发、推理运行及自定义算子开发等多种任务。

本文分享自华为云社区《使用MindStudio进行Pytorch离线推理全流程》,作者:yd_281378454。

1 MindStudio环境搭建

本次实验在MindStudio上进行,请先按照教程配置环境,安装MindStudio。

MindStudio的是一套基于华为自研昇腾AI处理器开发的AI全栈开发工具平台,该IDE上功能很多,涵盖面广,可以进行包括网络模型训练、移植、应用开发、推理运行及自定义算子开发等多种任务。MindStudio除了具有工程管理、编译、调试、运行等一般普通功能外,还能进行性能分析,算子比对,可以有效提高工作人员的开发效率。除此之外,MindStudio具有远端环境,运行任务在远端实现,对于近端的个人设备的要求不高,用户交互体验很好,可以让我们随时随地进行使用。

2 VPN安装和配置

安装好MindStudio后,需要配置远程环境。请按照教程进行VPN客户端的安装与配置。安装好VPN后,可以先在终端用ssh指令测试连接。(这一步是验证网络连接是否可用,也可以跳过)

3 创建推理工程

打开MindStudio,点击New Project,进入新建工程界面。选择Ascend APP。填入项目名spnasnet_100。首次新建训练工程时,需要配置CANN的版本。点击Change。

点击 + 配置远程连接,然后根据选项填入自己服务器的ip地址、端口号、用户名和密码等。

配置Remote CANN location。该参数需要填入ascend-toolkit在服务器上的路径地址。在这里,我们toolkit的路径如下:/usr/local/Ascend/ascend-toolkit/5.1.RC1。点击finishing进行配置。初次配置时时间稍长,请耐心等待。

点击Next,选择Pytorch Project。

点击Finish,完成工程创建,进入工程主界面。

4 配置SSH和Deployment

在MindStudio的远程服务中,定义了SSH 配置和Deployment两个概念。前者SSH 配置类似MobaxTerm中的Session的概念,用户可以保存多个远程服务器的连接配置。后者Deployment管理远程开发时的本地文件与远程文件的同步。配置好Deployment后,我们就可以像使用本地python环境一样去使用远程的python环境了。点击File -> Settings -> Tools,即可看到两个设置的入口,下面分别介绍如何配置他们。

4.1 配置SSH

首先点击SSH Configurations,再点击 + 配置远程连接,然后根据选项填入自己服务器的ip地址、端口号、用户名和密码等。测试成功点击Apply即可保存配置,以后就可以一键连接啦!

4.2 配置Deployment

Deployment配置能够更精准地连接远程服务,它需要选择一个SSH连接定位远程主机,然后设置本地与远程项目目录的对应关系。如下图所示创建一个新的Deployment。

如图310是我创建的Deployment名字,首先选择连接哪一个SSH服务,然后测试连接是否可用。

下一步,设置项目目录映射关系,点击Mappings,然后选择本地的项目目录和远程的项目目录(最好是提前创建好文件夹),接下来跑代码的时候MindStudio会保证这两个目录文件的同步。

配置好Mappings后,建议配置Excluded Paths,因为MindStudio的默认同步行为会把Mappings对应目录的文件保持完全相同,这意味着只存在于远程的数据集文件夹会被删除(如果本地没有数据集)。在此我配置了几个需要排除的文件夹目录。

5 配置远程python解释器

现在,SSH和Deployment的映射关系已经配置好了,但是MindStudio还不知道python解释器的位置。因此,下面将介绍如何配置python解释器。

点击File -> Project Structure->SDKs可以看到如图所示的界面。点击+号,可以新增python SDK和JDK。这里只演示Python的添加方法。

点击Add Python SDK后,将弹出下图所示的界面,点击左侧的SSH Interpreter,如下图所示,首先选择使用哪一个Deployment,这是刚刚我们配置过的。然后选择python解释器的路径。图中的路径是MindStudio自动检测出来的,但一般需要自己找自己的Python环境安装目录。如果是conda环境,可以使用which python找到python的安装路径。

然后点击Project,选择刚才添加到MindStudio中的python解释器,将其作为本项目使用的解释器。

6 数据集准备

6.1 数据预处理

上传好数据集以后,执行 preprocess_spnasnet_100_pytorch.py脚本,生成数据集预处理后的bin文件。

第一个参数为原始数据验证集(.jpeg)所在路径,第二个参数为输出的二进制文件(.bin)所在路径。每个图像对应生成一个二进制文件。

MindStudio会首先上传本地文件到远程服务器,将本地的文件同步到远程这个过程可能很慢,同步完成后开始运行Python代码,MindStudio会实时地在控制台打印输出:

6.2 生成数据集info文件

执行get_info.py脚本,生成数据集信息文件。

第一个参数为模型输入的类型,第二个参数为生成的bin文件路径,第三个为输出的info文件,第四、第五个为宽高信息。执行结果:

7 模型转换

本模型基于开源框架PyTorch训练的spnasnet_100进行模型转换。先使用PyTorch将模型权重文件.pth转换为.onnx文件,再使用ATC工具将.onnx文件转为离线推理模型文件.om文件。

首先获取权重文件。单击Link在PyTorch开源框架获中取经过训练的spnasnet_100权重文件model_best.pth.tar,源码中已提供下载权重文件。

7.1 导出onnx文件

使用pthtar2onnx.py脚本将.pth文件转换为.onnx文件

7.2 导出om文件

从onnx转为om需要用atc工具,MindStudio提供了atc工具的窗口化应用,它会根据用户选择自动生成atc指令。Model Converter的入口如图所示:

选择onnx模型路径,模型输出名称,目标设备,输入格式和batchsize等信息。

MindStudio自动生成如下atc指令,用户可以在此做最后的校验,点击Finish即可开始进行模型转换。

模型转换成功:

8 模型推理

使用benchmark工具进行推理。这个和前面的python脚本不同,它在MindStudio中属于ACL应用,可以如图所示创建应用:

点击 + 号,再点击Ascend App:

然后进行如下配置:

参数详情请参见《CANN推理benchmark工具用户指南》。推理后的输出默认在当前目录result下。

执行结果:

运行出错:error while loading shared libraries: libascendcl.so: cannot open shared object file: No such file or directory.

这个错误是因为没有配置好环境变量。因为我们在终端运行它时,一般要先执行一下:source /usr/local/Ascend/ascend-toolkit/set_env.sh,这一步操作在MindStudio中可以通过如图所示的方法配置环境变量解决:

变量内容就是/usr/local/Ascend/ascend-toolkit/set_env.sh的内容,读者可以直接复制使用。

LD_LIBRARY_PATH=/usr/local/Ascend/ascend-toolkit/latest/lib64:/usr/local/Ascend/ascend-toolkit/latest/lib64/plugin/opskernel:/usr/local/Ascend/ascend-toolkit/latest/lib64/plugin/nnengine:$LD_LIBRARY_PATH;PYTHONPATH=/usr/local/Ascend/ascend-toolkit/latest/python/site-packages:/usr/local/Ascend/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe:$PYTHONPATH;PATH=/usr/local/Ascend/ascend-toolkit/latest/bin:/usr/local/Ascend/ascend-toolkit/latest/compiler/ccec_compiler/bin:$PATH;ASCEND_AICPU_PATH=/usr/local/Ascend/ascend-toolkit/latest;ASCEND_OPP_PATH=/usr/local/Ascend/ascend-toolkit/latest/opp;TOOLCHAIN_HOME=/usr/local/Ascend/ascend-toolkit/latest/toolkit;ASCEND_HOME_PATH=/usr/local/Ascend/ascend-toolkit/latest

设置变量后,再次启动运行,可以在控制台看到,在执行benchmark前,会首先export环境变量。

修改后代码运行成功:

可以获得batch16 310单卡吞吐率为1379.94×4 = 5519.76 fps

9 精度验证

调用vision_metric_ImageNet.py脚本与数据集标签val_label.txt比对,可以获得Accuracy Top5数据,结果保存在result.json中。

第一个参数为生成推理结果所在路径,第二个参数为标签数据,第三个参数为生成结果文件路径,第四个参数为生成结果文件名称。

获得精度数据如下:310 Top1 accuracy为74.2%,Top5 accuracy为91.94%。

点击关注,第一时间了解华为云新鲜技术~

从零教你使用MindStudio进行Pytorch离线推理全流程的更多相关文章

  1. 从零教你如何获取hadoop2.4源码并使用eclipse关联hadoop2.4源码

    从零教你如何获取hadoop2.4源码并使用eclipse关联hadoop2.4源码http://www.aboutyun.com/thread-8211-1-1.html(出处: about云开发) ...

  2. MindStudio模型训练场景精度比对全流程和结果分析

    摘要:MindStudio是一套基于华为昇腾AI处理器开发的AI全栈开发平台 本文分享自华为云社区<MindStudio模型训练场景精度比对全流程和结果分析>,作者:yd_24730208 ...

  3. Git从零教你入门(4):Git服务之 gogs部署安装

    Git从零入门系列4: 先看上一篇文章: http://www.51testing.com/index.php?uid-497177-action-viewspace-itemid-3706817 今 ...

  4. 从零教你在Linux环境下(ubuntu)如何编译hadoop2.4

    问题导读: 1.如果获取hadoop src  maven包?2.编译hadoop需要装哪些软件?3.如何编译hadoop2.4?扩展:编译hadoop为何安装这些软件? 本文链接 http://ww ...

  5. 💒 es6 + canvas 开源 盖楼小游戏 完整代码注释 从零教你做游戏(一)

    盖楼游戏 一个基于 Canvas 的盖楼游戏 Demo 预览 在线预览地址 (Demo Link) 手机设备可以扫描下方二维码 github https://github.com/bmqb/tower ...

  6. JAVA RPC (七) 手把手从零教你写一个生产级RPC之client请求

    上节说了关于通用请求代理,实际上对spring的bean引用都是通过koalasClientProxy来实现的,那么在代理方法中才是我们实际的发送逻辑,咱们先看一下原生的thrift请求是什么样的. ...

  7. JAVA RPC (六) 之手把手从零教你写一个生产级RPC之client的代理

    首先对于RPC来讲,最主要的无非三点[SERVER IO模型].[序列化协议].[client连接池复用],之前的博客大家应该对thrift有一个大致的了解了,那么我们现在来说一说如何将thrift的 ...

  8. 使用pytorch构建神经网络的流程以及一些问题

    使用PyTorch构建神经网络十分的简单,下面是我总结的PyTorch构建神经网络的一般过程以及我在学习当中遇到的一些问题,期望对你有所帮助. PyTorch构建神经网络的一般过程 下面的程序是PyT ...

  9. 零基础java的福音!史上最全最精简的学习路线图!

    这是一个java系统学习路线,从零基础到项目框架开发,每一个阶段里面内容都标记的很清楚,如果你现在也在学习java,你可以跟着这个系统学习路线学,学完自己可以独立的完成项目框架开发,二线城市拿个7k+ ...

随机推荐

  1. 【Redis】事件驱动框架源码分析(单线程)

    aeEventLoop初始化 在server.c文件的initServer函数中,对aeEventLoop进行了初始化: 调用aeCreateEventLoop函数创建aeEventLoop结构体,对 ...

  2. Vue.js与Node.js一起打造一款属于自己的音乐App(收藏)

    更多内容请见原文,原文转载自:https://blog.csdn.net/weixin_44519496/article/details/118755888

  3. python基础知识-day7(文件操作)

    1.文件IO操作: 1)操作文件使用的函数是open() 2)操作文件的模式: a.r:读取文件 b.w:往文件里边写内容(先删除文件里边已有的内容) c.a:是追加(在文件基础上写入新的内容) d. ...

  4. JavaScript中async和await的使用以及队列问题

    宏任务和微任务的队列入门知识,可以参考之前的文章: JavaScript的事件循环机制 宏任务和微任务在前端面试中,被经常提及到,包括口头和笔试题 async && await概念 a ...

  5. 步态识别《GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition》2018 CVPR

    Motivation: 步态可被当作一种可用于识别的生物特征在刑侦或者安全场景发挥重要作用.但是现有的方法要么是使用步态模板(能量图与能量熵图等)导致时序信息丢失,要么是要求步态序列连续,导致灵活性差 ...

  6. BUCK 电路PSIM仿真模型搭建之一 (PI模块稳定性分析)

    1.  利用PI 模块仿真BUCK 电路电流环 在调制通道上未加入延迟环节时,无论KP, KI 参数如何调整系统都是稳定的 仿真结果: 在调制通道上引入 一个开关周期的延迟 系统出现明显的震荡情况,说 ...

  7. 分享|2022数字安全产业大数据白皮书(附PDF)

    内容摘要: 2021年以来,数字安全赛道的受关注程度达到一个历史新高度.<数据安全法><个人信息保护法><关键信息基础设施安全保护条例>,一个接一个重磅的法规接连出 ...

  8. 《Python编程:从入门到实践》第十八章笔记:Django最基本用法笔记

    最近在看Python编程:从入门到实践,这是这本书"项目3 Web应用程序"第18章的笔记.记录了django最基本的一些日常用法,以便自己查阅. 可能是我的这本书版本比较老,书上 ...

  9. C#/VB.NET 将PPT或PPTX转换为图像

    C#/VB.NET 将PPT或PPTX转换为图像 由于大多数便携式设备支持浏览图片而不支持浏览PowerPoint 文件,所以相比较而言,图像对于用户而言更加友好.除此之外,将PowerPoint文档 ...

  10. Luogu3426 [POI2005]SZA-Template (KMP)(未完成)

    未理解透,鬼知道怎么A的 蒟蒻交了个乱猜贪心搞了10pts,一翻题解群佬乱舞,最后DP解决 $\exists i - next[i] <= j, f[j] = f[next[i]] $ #inc ...