NLP知识图谱项目合集(信息抽取、文本分类、图神经网络、性能优化等)

这段时间完成了很多大大小小的小项目,现在做一个整体归纳方便学习和收藏,有利于持续学习。

1. 信息抽取项目合集

2.文本分类意图识别项目合集

3.模型性能提升项目合集

4.知识图谱项目合集

特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案(重点!)

在前面技术知识下可以看看后续的实际业务落地方案和学术方案

关于图神经网络的知识融合技术学习参考下面链接PGL图学习项目合集&数据集分享&技术归纳业务落地技巧[系列十]

从入门知识到经典图算法以及进阶图算法等,自行查阅食用!

文章篇幅有限请参考专栏按需查阅:NLP知识图谱相关技术业务落地方案和码源

4.1 特定领域知识图谱知识融合方案(实体对齐):优酷领域知识图谱为例

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128614951

4.2 特定领域知识图谱知识融合方案(实体对齐):文娱知识图谱构建之人物实体对齐

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128673963

4.3 特定领域知识图谱知识融合方案(实体对齐):商品知识图谱技术实战

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128674429

4.4 特定领域知识图谱知识融合方案(实体对齐):基于图神经网络的商品异构实体表征探索

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128674929

4.5 特定领域知识图谱知识融合方案(实体对齐)论文合集

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128675199

论文资料链接:两份内容不相同,且按照序号从小到大重要性依次递减

知识图谱实体对齐资料论文参考(PDF)+实体对齐方案+特定领域知识图谱知识融合方案(实体对齐)

知识图谱实体对齐资料论文参考(CAJ)+实体对齐方案+特定领域知识图谱知识融合方案(实体对齐)

4.6 知识融合算法测试方案(知识生产质量保障)

方案链接:https://blog.csdn.net/sinat_39620217/article/details/128675698

5.图神经网络

1.1 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一]https://aistudio.baidu.com/aistudio/projectdetail/4982973?contributionType=1

本项目对图基本概念、关键技术(表示方法、存储方式、经典算法),应用等都进行详细讲解,并在最后用程序实现各类算法方便大家更好的理解。当然之后所有图计算相关都是为了知识图谱构建的前置条件

1.2 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)

https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1

现在已经覆盖了图的介绍,图的主要类型,不同的图算法,在Python中使用Networkx来实现它们,以及用于节点标记,链接预测和图嵌入的图学习技术,最后讲了GNN分类应用以及未来发展方向!

1.3 图学习初探Paddle Graph Learning 构建属于自己的图【系列三】

https://aistudio.baidu.com/aistudio/projectdetail/5000517?contributionType=1

本项目主要讲解了图学习的基本概念、图的应用场景、以及图算法,最后介绍了PGL图学习框架并给出demo实践,过程中把老项目demo修正版本兼容问题等小坑,并在最新版本运行便于后续同学更有体验感

1.4 PGL图学习之图游走类node2vec、deepwalk模型[系列四]

https://aistudio.baidu.com/aistudio/projectdetail/5002782?contributionType=1

介绍了图嵌入原理以及了图嵌入中的DeepWalk、node2vec算法,利用pgl对DeepWalk、node2vec进行了实现,并给出了多个框架版本的demo满足个性化需求。

介绍词向量word2evc概念,及CBOW和Skip-gram的算法实现。

主要引入基本的同构图、异构图知识以及基本概念;同时对deepWalk代码的注解以及node2vec、word2vec的说明总结;(以及作业代码注解)

1.5 PGL图学习之图游走类metapath2vec模型[系列五]

https://aistudio.baidu.com/aistudio/projectdetail/5009827?contributionType=1

介绍了异质图,利用pgl对metapath2vec以及metapath2vec变种算法进行了实现,同时讲解实现图分布式引擎训练,并给出了多个框架版本的demo满足个性化需求。

1.6 PGL图学习之图神经网络GNN模型GCN、GAT[系列六] [https://aistudio.baidu.com/aistudio/projectdetail/5054122?contributionType=1](https://aistudio.baidu.com/aistudio/projectdetail/5054122?c

ontributionType=1)

本次项目讲解了图神经网络的原理并对GCN、GAT实现方式进行讲解,最后基于PGL实现了两个算法在数据集Cora、Pubmed、Citeseer的表现,在引文网络基准测试中达到了与论文同等水平的指标。

1.7 PGL图学习之图神经网络GraphSAGE、GIN图采样算法[系列七] https://aistudio.baidu.com/aistudio/projectdetail/5061984?contributionType=1

本项目主要讲解了GraphSage、PinSage、GIN算法的原理和实践,

并在多个数据集上进行仿真实验,基于PGl实现原论文复现和对比,也从多个角度探讨当前算法的异同以及在工业落地的技巧等。

1.8 PGL图学习之图神经网络ERNIESage、UniMP进阶模型[系列八]

https://aistudio.baidu.com/aistudio/projectdetail/5096910?contributionType=1

ErnieSage 可以同时建模文本语义与图结构信息,有效提升 Text Graph 的应用效果;UniMP 在概念上统一了特征传播和标签传播, 在OGB取得了优异的半监督分类结果。

ERNIESage运行实例介绍(1.8x版本),提供多个版本pgl代码实现

1.9 PGL图学习之项目实践(UniMP算法实现论文节点分类、新冠疫苗项目)[系列九]

https://aistudio.baidu.com/aistudio/projectdetail/5100049?contributionType=1

本项目借鉴了百度高研黄正杰大佬对图神经网络技术分析以及图算法在业务侧应用落地;实现了论文节点分类和新冠疫苗项目的实践帮助大家更好理解学习图的魅力。

图神经网络7日打卡营的新冠疫苗项目拔高实战

基于UniMP算法的论文引用网络节点分类,在调通UniMP之后,后续尝试的技巧对于其精度的提升效力微乎其微,所以不得不再次感叹百度PGL团队的强大!

6.其他项目

强化学习

深度学习

༄ℳ持续更新中ꦿོ࿐

NLP知识图谱项目合集(信息抽取、文本分类、图神经网络、性能优化等)的更多相关文章

  1. 深度学习优质学习项目大放送!-AI Studio精选开源项目合集推荐

    近期 在AI Studio上发现了不少优质的开源深度学习项目,从深度学习入门到进阶,涵盖了CV.NLP.生成对抗网络.强化学习多个研究方向,还有最新的动态图,都以NoteBook的方式直接开源出来,并 ...

  2. Python之路【第二十四篇】:Python学习路径及练手项目合集

      Python学习路径及练手项目合集 Wayne Shi· 2 个月前 参照:https://zhuanlan.zhihu.com/p/23561159 更多文章欢迎关注专栏:学习编程. 本系列Py ...

  3. 超全的 Vue 开源项目合集,签收一下

    超全的 Vue 开源项目合集,签收一下 xiaoge2016 前端开发 1周前 作者:xiaoge2016 链接: https://my.oschina.net/u/3018050/blog/2049 ...

  4. Python学习路径及练手项目合集

    Python学习路径及练手项目合集 https://zhuanlan.zhihu.com/p/23561159

  5. 最新最全的 Android 开源项目合集

    原文链接:https://github.com/opendigg/awesome-github-android-ui 在 Github 上做了一个很新的 Android 开发相关开源项目汇总,涉及到 ...

  6. 基于.NET Core的优秀开源项目合集

    开源项目非常适合入门,并且可以作为体系结构参考的好资源, GitHub中有几个开源的.NET Core项目,这些项目将帮助您使用不同类型的体系结构和编码模式来深入学习 .NET Core技术, 本文列 ...

  7. NLP(二十八)多标签文本分类

      本文将会讲述如何实现多标签文本分类. 什么是多标签分类?   在分类问题中,我们已经接触过二分类和多分类问题了.所谓二(多)分类问题,指的是y值一共有两(多)个类别,每个样本的y值只能属于其中的一 ...

  8. GitHub上个最有意思的项目合集(技术清单系列)

    没有1K以上的星星都不好意思推荐给大家!林子大了,啥项目都有,这里给大家搜罗了10个Github上有趣的项目.如果你就着辣椒食用本文,一定会激动的流下泪来...... 1.一行代码没有 | 18k s ...

  9. (转)Python学习路径及练手项目合集

    转载自知乎 Wayne Shi,仅仅为了方便收藏查看,侵权删. 阶段1:入门知识 零编程基础的可以先从下面几个教程了解编程及环境入门知识.(已有编程基础直接从阶段2起步) 1. 编程新手指南2. Li ...

  10. [ Linux运维学习 ] 路径及实战项目合集

    我们知道运维工程师(Operations)最基本的职责就是负责服务的稳定性并确保整个服务的高可用性,同时不断优化系统架构.提升部署效率.优化资源利用率,确保服务可以7*24H不间断地为用户提供服务. ...

随机推荐

  1. DQL-模糊查询

    DQL-模糊查询 模糊查询即模糊检索,是指搜索系统自动按照用户输入关键词的同义词进行模糊检索,从而得出较多的检索结果.与之相反的是"精准搜索".模糊检索也可以说是同义词检索,这里的 ...

  2. SpringBoot问题集合

    Whitelabel Error Page This application has no explicit mapping for /error, so you are seeing this as ...

  3. Django系列---开发二

    django.contrib.auth Django的用户验证框架,可以快速实现用户信息验证.登录.登出等用户操作 from django.contrib.auth import authentica ...

  4. Git 实战分支版本管理策略 | TBD++ Flow

    ​简介 随着Git的普及,为了更高效地进行团队协作开发,人们通过经验总结研究出了几套适用于各种团队和项目的分支管理策略,上篇文章我们讲解了 Git Flow 代码版本管理策略,它对版本控制较为严格,主 ...

  5. Python调用golang

    有些时候因为效率问题部分代码会 使用Python调用go的编译生成动态链接库go 代码示例//add.gopackage main import "C" //export Addf ...

  6. Web Api出现500 Internal Server Error 错误

    在测试环境一切正常,但是部署到了生产环境发现一直报错.查询网上的方法设置了权限等等.都没有解决 原来发现是数据库连接字符串的问题.只需要把数据库连接字符串修改正确即可!

  7. 数电第8周周结_by_yc

    基本知识: 1.有限状态机的分类: Moore型:输出仅与电路的状态有关: Mealy型:输出与当前电路状态和当前电路输入有关. 2.有限状态机的描述方法: 状态转换图:节点:状态(Moore输出): ...

  8. 【每日一题】【回溯】【StringBuilder】2021年12月7日-17. 电话号码的字母组合

    给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合.答案可以按 任意顺序 返回. 给出数字到字母的映射如下(与电话按键相同).注意 1 不对应任何字母. 来源:力扣(LeetCode)链 ...

  9. .NET 6 基于IDistributedCache实现Redis与MemoryCache的缓存帮助类

    本文通过IDistributedCache的接口方法,实现Redis与MemoryCache统一帮助类.只需要在配置文件中简单的配置一下,就可以实现Redis与MemoryCache的切换. 目录 I ...

  10. 【leetcode】剑指offer04二维数组查找

    很巧妙地把矩阵转化为二叉搜索树(不过好像没什用) class Solution { public: bool findNumberIn2DArray(vector<vector<int&g ...