遗传算法求TSP问题
一、实验内容及目的
本实验以遗传算法为研究对象,分析了遗传算法的选择、交叉、变异过程,采用遗传算法设计并实现了商旅问题求解,解决了商旅问题求解最合适的路径,达到用遗传算法迭代求解的目的。选择、交叉、变异各实现了两种,如交叉有顺序交叉和部分交叉。
二、实验环境
Windows10
开发环境Python 3/Flask
三、实验设计与实现

图1软件结构图
图1软件结构图
Flask.py是后端核心代码,里面是遗传算法实现,index.html为首页,即第一次进入网页的页面,进入之后可以进行参数设置,之后点击开始,参数会传到Flask.py中进行解析和算法运行,最终将迭代结果存到result(存储迭代结果图)和result_path(存储最短路径图)在返回给display.html页面显示。

图2系统界面图
图2系统界面图
输入种群规模、迭代次数、变异概率、选择比例、交叉概率并选择变异方法、选择个体方法、交叉方法。点击开始即可运行该系统。
具体算法流程图:
图3核心算法流程图
流程图描述:首先根据参数城市数量和种群规模初始一个城市坐标矩阵的列表并计算城市间的距离存到矩阵,最后生成一个路径矩阵,这样就可以进入下一步计算适应度,每一条路径都有其路径距离值和适应度,接下来一次进行选择,交叉,变异操作,循环往复,直至达到了参数中的迭代次数限制。
选择—轮盘赌:(这里我的算法选出的种群数量不一定就恰好是根据比例算出的数量)

图3核心算法流程图

图4轮盘赌流程图
选择—锦标赛:

图5三元锦标赛流程图
交叉—顺序交叉:
1、 选切点X,Y
2、 交换中间部分
3、 从第二个切点Y后第一个基因起列出原顺序,去掉已有基因
4、 从第二个切点Y后第一个位置起,将获得的无重复顺序填入

图6顺序交叉动态图

图7顺序交叉静态图
交叉—部分交叉:
1、 选切点oop
2、 选取oop到oop+3部分交换(我这里就是三个,你可以做成随机的几个)
3、 判断是否有重复的,若重复则进行映射,保证形成的新一对子代基因无冲突。

图8部分交叉动态图
变异—两点交换
1、 随机选取两点
2、 两点进行交换
变异—相邻交换
1、 随机选取一点
2、 和该点的后面点进行交换
适应度函数:经过测试得A取5,B取0效果好,所以实验中直接取了A=5,B=0运行
借鉴了sigmoid函数的形式,并对数据做了最大最小标准化,A、B是人为给定的常系数mean、max、min是种群所有个体的目标函数值的均值、最大值、最小值图像如下A=5,B=0
适应值较大的更容易进入下一代种群中

图9适应度函数算术表达式
四、实验结果与测试
表1 遗传算法解决TSP问题的测试用例
测试内容 | 测试用例 | 预期结果 | 实际结果 |
种群规模 | 1.不输入 2.输入除数字其他 3.输入整数数字 4.输入小数或者负数 |
失败 失败 成功 失败 |
与预期相同 |
迭代次数 | 5.不输入 6.输入除数字其他 7.输入整数数字 8.输入小数或者负数 |
失败 失败 成功 失败 |
与预期相同 |
变异方法 | 9.选择两点交换 10.选择相邻交换 |
成功 成功 |
与预期相同 |
选择个体方法 | 11.选择轮盘赌 12.选择锦标赛 |
成功 成功 |
与预期相同 |
交叉方法 | 13.选择部分交叉 14.选择顺序交叉 |
成功 成功 |
与预期相同 |
变异概率 | 15.不输入 16.输入除数字其他 17.输入小于1的小数 18.输入非小于1的小数或者整数 |
失败 失败 成功 失败 |
与预期相同 |
选择比例 | 19.不输入 20.输入除数字其他 21.输入小于1的小数 22.输入非小于1的小数或者整数 |
失败 失败 成功 失败 |
与预期相同 |
交叉概率 | 23.不输入 24.输入除数字其他 25.输入小于1的小数 26.输入非小于1的小数或者整数 |
失败 失败 成功 失败 |
与预期相同 |
随机产生多少个城市 | 27.不输入 28.输入除数字其他 29.输入整数数字 30. 输入小数或者负数 |
失败 失败 成功 失败 |
与预期相同 |

图10参数设置图
在上述参数设置好之后,即可开始运行系统,最后产生如图11的迭代结果图,最上面是自己的参数设置和最后生成的最小路径min_dist,图示整体为每次迭代的路径距离,可见随着迭代次数增加,路径距离一直减小最后趋于稳定。图12为用python画的路径图,图中横轴纵轴为城市位置的X,Y坐标。

图11 迭代结果图

图12最短路径图
接下来重新选择其他参数来运行一下,看一下有没有区别。

图13参数设置图

图14迭代结果图

图15最短路径图
可以从迭代图像看出,参数不同会导致迭代中结果的不同,第一次参数设置的迭代中在前段迭代不稳定,忽上忽下,之后稳定,而第二次参数设置后迭代很快就稳定,没有忽上忽下的现象,所以不同的选择、变异、交叉方法会使迭代结果不同。所以可以根据随机设定让计算机找到最合适的参数设置。
欢迎关注我的知乎平台,我将持续为您解答一系列问题!
遗传算法求TSP问题的更多相关文章
- 基于遗传算法求解TSP问题(Java界面)
近期为做展示,改写了一个遗传算法求TSP的Java界面版,思路代码和 http://blog.csdn.net/wangqiuyun/article/details/12838903 这篇文章思路是一 ...
- 转:遗传算法解决TSP问题
1.编码 这篇文章中遗传算法对TSP问题的解空间编码是十进制编码.如果有十个城市,编码可以如下: 0 1 2 3 4 5 6 7 8 9 这条编码代表着一条路径,先经过0,再经过1,依次下去. 2.选 ...
- 利用遗传算法求解TSP问题
转载地址 https://blog.csdn.net/greedystar/article/details/80343841 目录 一.问题描述 二.算法描述 三.求解说明 四.参考资料 五.源代码 ...
- 遗传算法解决TSP问题实现以及与最小生成树的对比
摘要: 本实验采用遗传算法实现了旅行商问题的模拟求解,并在同等规模问题上用最小生成树算法做了一定的对比工作.遗传算法在计算时间和占用内存上,都远远优于最小生成树算法. 程序采用Microsoft vi ...
- 用遗传算法解决TSP问题
浅谈遗传算法:https://www.cnblogs.com/AKMer/p/9479890.html Description \(小m\)在踏上寻找\(小o\)的路程之后不小心碰到了大魔王\(fat ...
- 遗传算法解决TSP问题
1实验环境 实验环境:CPU i5-2450M@2.50GHz,内存6G,windows7 64位操作系统 实现语言:java (JDK1.8) 实验数据:TSPLIB,TSP采样实例库中的att48 ...
- 遗传算法求解TSP问题
package com.louis.tsp; /** * Project Name:GeneticAlgorithm * File Name:Individual.java * Package Nam ...
- [PHP] 遗传算法求函数最大值一般实现
需求:求解函数 f(x) = x + 10*sin(5*x) + 7*cos(4*x) 在区间[0,9]的最大值. <?php /* 需求:求解函数 f(x) = x + 10*sin(5*x) ...
- 基础遗传算法的TSP问题
一.简介 旅行商问题是一个经典的组合优化问题.一个经典的旅行商问题可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地.应如何选择行进路线,以使总的 ...
- Python动态展示遗传算法求解TSP旅行商问题(转载)
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/jiang425776024/articl ...
随机推荐
- JS逆向实战1——某省阳光采购服务平台
分析 其实这个网站基本没有用到过什么逆向,就是简单的图片base64加密 然后把连接变成2进制存成文件 然后用ocr去识别即可 !! 注意 在获取图片连接 和对列表页发起请求时一定要用一个请求,也就是 ...
- 云原生之旅 - 7)部署Terrform基础设施代码的自动化利器 Atlantis
前言 前面有几篇文章讲述了如何使用Terraform创建资源 (基础设施即代码 Terraform 快速入门, 使用 Terraform 创建 Kubernetes) 以及 Kubernetes时代的 ...
- Java计算文件或文件夹大小
导入此类后,直接调用FilesUtil.returnSizi(String path),即可获取文件或者文件夹大小. 代码: 1 /** 2 * 路人甲操作文件的工具类 3 * returnSizi( ...
- springboot中使用mybatis_plus逆向工程
创建springboot项目,选择图片中所示依赖 mybatis-plus生成的依赖 <!-- mybatis_plus --> <dependency> <groupI ...
- 本地GoLand编辑与调试远端服务器上的代码
Goland是专为Go开发人员构建的跨平台IDE,功能非常强大,拥有强大的代码洞察力,帮助所有Go开发人员即时错误检测和修复建议,快速和安全的重构,一步撤销,智能代码完成,死代码检测和文档提示,让您创 ...
- PGL图学习之图神经网络GraphSAGE、GIN图采样算法[系列七]
0. PGL图学习之图神经网络GraphSAGE.GIN图采样算法[系列七] 本项目链接:https://aistudio.baidu.com/aistudio/projectdetail/50619 ...
- Python中 or、and 的优先级
上式可以看出 先看 and 输出才为 ture 因此 优先级 and>or
- Linux面试题2:网络IO模型 & IO多路复用
网络IO 先确定一下范围,我们讨论的都是网络IO,现阶段计算机早已经从CPU密集型转换成网络IO密集型,所以网络io的类型对于服务响应而言更重要. 五种IO模型 依据Unix的IO分类,网络IO分为五 ...
- vue3 第二天vue响应式原理以及ref和reactive区别
前言: 前天我们学了 ref 和 reactive ,提到了响应式数据和 Proxy ,那我们今天就来了解一下,vue3 的响应式 在了解之前,先复习一下之前 vue2 的响应式原理 vue2 的响应 ...
- 第2-4-10章 规则引擎Drools实战(3)-保险产品准入规则
目录 9.3 保险产品准入规则 9.3.1 决策表 9.3.2 规则介绍 9.3.3 实现步骤 9.3 保险产品准入规则 全套代码及资料全部完整提供,点此处下载 9.3.1 决策表 前面我们编写的规则 ...