P1219 [USACO1.5]八皇后 Checker Challenge
好长时间没登博客园了,今天想起了账号密码,遂发一篇题解
最近因为复赛正在复健搜索,所以做了这道题
这道题说难并不是很难,但是在于这个题需要找到两个规律
以下是原题
[USACO1.5]八皇后 Checker Challenge
题目描述
一个如下的 6 * 6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 3 个解。最后一行是解的总个数。
输入格式
一行一个正整数 n,表示棋盘是 n * n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
样例 #1
样例输入 #1
6
样例输出 #1
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
提示
【数据范围】
对于 100% 的数据,6<=n<=13
题目翻译来自NOCOW。
分析时间
我最初的1.0做法是dfs的参数枚举行,for枚举列
然后一输出,妙哉!
后来运行以后,发现输出了几万种可能。。。
怎么回事呢?
我们注意这样的一句不起眼的话
每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
搜嘎,原来是这里没看见啊,意气风发の我翻开编译器,傻眼了:
我们应该怎样去判断到底是哪一行对角线呢?该怎么命名有规律呢?
我打开了画图,仔细的把样例画了出来
(哦,我这天才的审美)
研究了一下,发现左对角线(往左撇)和右对角线(往右撇)不能存放在一个数组里,需要用两个
于是用 lx[] 和 rx[] 来表示
聪明的人已经发现了规律
左对角线行列的和 -1 为 1~n*2-1 的编号
右对角线行 - 列 +n 为 1~n*2-1 的编号
注意:递归千万不要忘了回溯的时候恢复现场!!!
AC代码
#include<iostream>
#include<queue>
using namespace std;
int n,tot,cnt;
int a[15];
int q[15];
int lx[30];
int rx[30];
int l,r;
void dfs(int t){
if(t>n){
cnt++;//计数
if(cnt<=3){
for(int i=1;i<=n;i++) cout<<q[i]<<" ";
cout<<endl;
}//输出
return ;//已经得出一个正解,返回
}
for(int i=1;i<=n;i++){
if(a[i]==0){
if(lx[i+t-1]!=0) continue;
if(rx[t-i+n]!=0) continue;
a[i]=1;
q[++tot]=i;
lx[i+t-1]=1;
rx[t-i+n]=1;
dfs(t+1);
tot--;//回溯
lx[i+t-1]=0;
rx[t-i+n]=0;
a[i]=0;
}
}
}
int main(){
cin>>n;
dfs(1);
cout<<cnt;
}
感谢观看!!!ありがどう!
P1219 [USACO1.5]八皇后 Checker Challenge的更多相关文章
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- 洛谷 P1219 八皇后【经典DFS,温习搜索】
P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...
- 洛谷 P1219八皇后
把全部,在这251秒,赌上! ——<游戏人生zero> 题目:https://www.luogu.org/problem/P1219 八皇后是一道非常非常非常经典的深搜+回溯的题目. 这道 ...
- P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷 p1219 八皇后
刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...
- P1219 八皇后 含优化 1/5
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 【搜索】P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
随机推荐
- 【论文笔记】UNet
语义分割的U-Net网络结构Unet是2015年诞生的模型,它几乎是当前segmentation项目中应用最广的模型.Unet能从更少的训练图像中进行学习,当它在少于40张图的生物医学数据集上训练时, ...
- CF818G - Four Melody
题意:对于一个序列,令一个 \(melody\) 为一个子序列满足子序列的相邻两项相差 \(1\) 或者模 \(7\) 同余.现在提取四个不重合的 \(melody\),求最长总长度. 我们先考虑暴力 ...
- 一次k8s docker下.net程序的异常行为dump诊断
背景 昨天,一位朋友找到我寻求帮助.他的项目需要调用一个第三方项目的webAPI.这个webAPI本身可从header, query string中取相关信息,但同事发现他在调用时,无法按期望的那样从 ...
- Laravel 框架根据经纬度计算在一定距离内的数据
$model = DB::table('table_name'); public static function scope_distance($model, $from_latitude, $fro ...
- Solidity8.0-02
对应崔棉大师 26-40课程https://www.bilibili.com/video/BV1yS4y1N7yu/?spm_id_from=333.788&vd_source=c81b130 ...
- ORACLE 遇到ORA-31693 ORA-31617 ORA-19505 ORA-27037
今天发现生产的RAC环境expdp计划任务出现报错 之前一度认为是备份目录权限的问题 官方文档: MOS参考文档:DataPump Export (EXPDP) Fails With Errors O ...
- springboot配置ssl变成https证书
前段时间跳槽了,疫情期间啥也干,回想了这个项目当中的一些新接触的东西记下来,为了方便以后自己看,也给新手提供以下便利.如果这边篇随笔能够给你带来便利,小衲不胜荣幸,如果有错误也欢迎批评指正,大家共同学 ...
- 阿里巴巴Java代码规范(一)
现代软件架构都需要协同开发完成,高效协作即降低协同成本,提升沟通效率,所谓无规矩不成方圆,无规范不能协作. 本博客是对<阿里巴巴Java开发手册>的学习记录.大多记录的是强制规约,具体请参 ...
- 记录将Base64字符串转化为图片遇到的问题
今天通过与别人写的api交互,获取到了一个原为图片的base64字符串,在网上找到了相互转换的方法,但是在转化时,报出了"输入不是有效的 Base64 字符串,因为它包含非 base 64 ...
- JVM(一) --- 什么是JVM
写在文章前:本系列博客是学习黑马程序员JVM完整教程所做笔记.若有错误希望大佬们评论区修正. 一.什么是JVM Java Virtual Machine - java程序运行时所需环境(ja ...