P1219 [USACO1.5]八皇后 Checker Challenge
好长时间没登博客园了,今天想起了账号密码,遂发一篇题解
最近因为复赛正在复健搜索,所以做了这道题
这道题说难并不是很难,但是在于这个题需要找到两个规律
以下是原题
[USACO1.5]八皇后 Checker Challenge
题目描述
一个如下的 6 * 6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
上面的布局可以用序列 2 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:
行号 1 2 3 4 5 6
列号 2 4 6 1 3 5
这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 3 个解。最后一行是解的总个数。
输入格式
一行一个正整数 n,表示棋盘是 n * n 大小的。
输出格式
前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。
样例 #1
样例输入 #1
6
样例输出 #1
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
提示
【数据范围】
对于 100% 的数据,6<=n<=13
题目翻译来自NOCOW。
分析时间
我最初的1.0做法是dfs的参数枚举行,for枚举列
然后一输出,妙哉!
后来运行以后,发现输出了几万种可能。。。
怎么回事呢?
我们注意这样的一句不起眼的话
每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。
搜嘎,原来是这里没看见啊,意气风发の我翻开编译器,傻眼了:
我们应该怎样去判断到底是哪一行对角线呢?该怎么命名有规律呢?
我打开了画图,仔细的把样例画了出来
(哦,我这天才的审美)
研究了一下,发现左对角线(往左撇)和右对角线(往右撇)不能存放在一个数组里,需要用两个
于是用 lx[] 和 rx[] 来表示
聪明的人已经发现了规律
左对角线行列的和 -1 为 1~n*2-1 的编号
右对角线行 - 列 +n 为 1~n*2-1 的编号
注意:递归千万不要忘了回溯的时候恢复现场!!!
AC代码
#include<iostream>
#include<queue>
using namespace std;
int n,tot,cnt;
int a[15];
int q[15];
int lx[30];
int rx[30];
int l,r;
void dfs(int t){
if(t>n){
cnt++;//计数
if(cnt<=3){
for(int i=1;i<=n;i++) cout<<q[i]<<" ";
cout<<endl;
}//输出
return ;//已经得出一个正解,返回
}
for(int i=1;i<=n;i++){
if(a[i]==0){
if(lx[i+t-1]!=0) continue;
if(rx[t-i+n]!=0) continue;
a[i]=1;
q[++tot]=i;
lx[i+t-1]=1;
rx[t-i+n]=1;
dfs(t+1);
tot--;//回溯
lx[i+t-1]=0;
rx[t-i+n]=0;
a[i]=0;
}
}
}
int main(){
cin>>n;
dfs(1);
cout<<cnt;
}
感谢观看!!!ありがどう!
P1219 [USACO1.5]八皇后 Checker Challenge的更多相关文章
- 『嗨威说』算法设计与分析 - 回溯法思想小结(USACO-cha1-sec1.5 Checker Challenge 八皇后升级版)
本文索引目录: 一.回溯算法的基本思想以及个人理解 二.“子集和”问题的解空间结构和约束函数 三.一道经典回溯法题点拨升华回溯法思想 四.结对编程情况 一.回溯算法的基本思想以及个人理解: 1.1 基 ...
- USACO1.5 Checker Challenge(类n皇后问题)
B - B Time Limit:1000MS Memory Limit:16000KB 64bit IO Format:%lld & %llu Description E ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- 洛谷 P1219 八皇后【经典DFS,温习搜索】
P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...
- 洛谷 P1219八皇后
把全部,在这251秒,赌上! ——<游戏人生zero> 题目:https://www.luogu.org/problem/P1219 八皇后是一道非常非常非常经典的深搜+回溯的题目. 这道 ...
- P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷 p1219 八皇后
刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...
- P1219 八皇后 含优化 1/5
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 【搜索】P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
随机推荐
- CSP2022 S游记
9.26:开坑. 没报 J 组主要是因为 J 比较垃圾,去抢小朋友的一等没什么意思. 初赛 刚拿到试卷就直接懵了,这 tm 是给人做的题?宇宙射线是什么奇妙东西,还有基数排序我根本不会啊,这个阅读程序 ...
- 图文指南 篇二:虚拟机ESXi6.7安装黑群晖教程
转载:什么值得买 (ESXI虚拟机是非常好用的多开虚拟机是VM系列非常强的) https://post.smzdm.com/p/agd8l34w/#:~:text=7%E5%AE%89%E8%A3%8 ...
- php pdo如何查询记录条数
转载php中文网:https://www.php.cn/php-ask-457710.html php pdo查询记录条数的方法:1.使用fetchAll函数查询,其语法如"$rows=$q ...
- C#本地时间转Unix时间
获取Unix时间最高效的方法 /// <summary> /// 扩展方法, 本地时间转Unix时间; (如 本地时间 "2020-01-01 20:20:10" 转换 ...
- css background背景透明
background: transparent; background: rgba(0, 0, 0, 0.8);
- CF884F - Anti-Palindromize
我们发现这个题的数据范围."字符和位置匹配"再加上一条奇怪的限制,长得就很网络流,那么就考虑如何用网络流做. 考虑重新解释一下这个题面,其实就是:给定一个字符集和 \(n\) 个位 ...
- NameError: name '_name_' is not defined
if _name_ == '_main_': 错误的原因可能是name是双下划线.(明显下面的下划线要长一点) if __name_ == '_main__':
- computed与watch的区别
1.computed表示的是计算属性,watch指的是监听属性,监听的值变化时执行回调函数 2.computed会使用缓存,而watch不使用缓存,每次监听都执行回调 3.computed需要retu ...
- Docker和Kubernetes网络模型
Docker网络模型 Bridge模式(默认) Docker程序启动后会创建一个bridge0网桥,并分配一个IP,可以想象成一个虚拟的交换机,创建的容器实例都会通过虚拟网卡veth pair设备连接 ...
- 解决html2canvas.js和pdf.js导出页面问题
最近在做项目时有这么一个需求,需要将当前html页面导出pdf到本地.由于之前是做过类似的功能的借助了两个插件分别是html2canvas.js和pdf.js,本以为是非常顺利就能完成的,实际在使用过 ...